4.6 Article

n-Eicosane-Impregnated nonwoven phase change mats of electrospun Poly (ethylene oxide)/Poly(methyl methacrylate) blended fibers

Journal

MATERIALS CHEMISTRY AND PHYSICS
Volume 296, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2022.127201

Keywords

Electrospinning; Phase change fibers; n-Eicosane; Thermal analysis; poly(methyl methacrylate); poly(ethylene oxide)

Ask authors/readers for more resources

In this study, polyethylene oxide/poly (methyl methacrylate) electrospun fibers were used as encapsulation matrices for phase change materials. The effect of n-eicosane content on the morphology and thermal properties of the fibers was extensively investigated. It was found that the addition of n-eicosane improved the thermal reliability of the fibers, and the system with 10% n-eicosane showed the most promising results. The degradation kinetics of n-eicosane were also studied.
The ever-increasing energy demand led scientists turn to more efficient, environmentally friendly, and renewable technologies. Phase change materials (PCMs) are gaining popularity in the field of passive thermal energy storage. In the current work, polyethylene oxide/poly (methyl methacrylate) (PEO/PMMA) electrospun fibers were employed as encapsulation matrices for n-eicosane and their physicochemical properties were tested, aiming to develop stable phase change fibers (PCFs). The effect of the n-eicosane content on the morphology and thermal properties of the form-stable PEO/PMMA/n-eicosane PCFs was extensively investigated by using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA). The melting and crystallization enthalpy of PEO/PMMA/n-eicosane remained unchanged during the first and second cycle. After 30 heating-cooling cycles, the samples with 2 and 5 wt% n-eicosane exhibited inferior thermal reliability, while no temperature and enthalpy change were observed after the thermal cycling of PCF with 7.5 and 10 wt% n-eicosane content, thus rendering these systems suitable materials for thermal energy storage applications. The most promising system was the one containing a 10 wt% n-eicosane, due to the higher crystallization enthalpy (184 J/g) and the stabilization of the melting and crystallization peaks for all cycles. The degradation kinetics were investigated for n-eicosane, the pristine PEO/ PMMA fibers and the PEO/PMMA/n-eicosane fibers with a 10 wt% n-eicosane content. Moreover, the Activation Energy (Ea) and the pre-exponential factor (A) were calculated using the Friedman and Vyazovkin methods whereas the reaction mechanisms were studied using the model fitting method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available