4.7 Article

Phase Behavior of Polymer-Grafted Nanoparticles in Homopolymer Blends from Simulations

Journal

MACROMOLECULES
Volume 55, Issue 23, Pages 10245-10254

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.2c01684

Keywords

-

Ask authors/readers for more resources

The phase behavior of polymer-grafted nanoparticles (gNPs) in homopolymer matrices has been investigated using coarse-grained simulations. The results show that the phase diagram for gNPs densely grafted with short A chains and blended with long B homopolymer chains is significantly shifted, due to a loss of chain configurational entropy for the long B matrix chains to penetrate the polymer brushes around the gNPs. Adding additional A homopolymer to the polymer matrix increases the miscibility of the gNPs on the gNP-rich side of the phase diagram.
The phase behavior of polymer-grafted nanoparticles (gNPs) in homopolymer matrices is investigated using coarse grained simulations. Simulations are performed using theoretically informed Langevin dynamics (TILD), a particle-based method that uses a particle-to-mesh scheme to efficiently calculate the nonbonded interactions. Direct two-phase simulations are used to determine coexistence curves. The phase diagram for NPs densely grafted with short A chains and blended with long B homopolymer chains is significantly shifted compared to that for an AB homopolymer blend with chains of the same lengths. This is due to a loss of chain configurational entropy for the long B matrix chains to penetrate the polymer brushes around the gNPs. Adding additional A homopolymer to the polymer matrix leads to an increase in miscibility of the gNPs on the gNP-rich side of the phase diagram. The extra A homopolymer helps to compatibilize the interface between the gNPs and the matrix B chains. Our results are consistent with both experiments and modeling of poly(methyl methacrylate) (PMMA)-grafted silica NPs in poly(styrene-ran-acrylonititrile) (SAN) and PMMA-NP/SAN/PMMA composites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available