4.7 Article

A Semicrystalline Poly(azobenzene) Exhibiting Room Temperature Light-Induced Melting, Crystallization, and Alignment

Journal

MACROMOLECULES
Volume 55, Issue 23, Pages 10330-10340

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.2c01576

Keywords

-

Funding

  1. Office of Naval Research through the MURI on Photomechanical Materials
  2. Air Force Office of Scientific Research
  3. [ONR N00014-18-1-2624]
  4. [21RT0488]

Ask authors/readers for more resources

This study prepared a novel semicrystalline poly(azobenzene) material with lower Tg and Tm values and demonstrated its fast and reversible photomelting and photocrystallization abilities at room temperature, as well as controllable photoalignment.
Photomechanical materials powered by light-induced changes in crystalline lattices offer promise for improved performance due to the high degree of coordination between the shape changes of individual molecules. While photoswitchable semicrystalline polymers present an attractive combination of molecular ordering and material processability, systems developed to date typically show high glass transition (Tg) and melting (Tm) temperatures, limiting their ability to undergo rapid and complete photoswitching under ambient conditions. Here, we prepare a semicrystalline poly(azobenzene) containing an ethylene glycol chain extender, denoted as P(EG-azo). Because of its backbone flexibility, P(EG-azo) shows values of Tg (-20 degrees C) and Tm (74 degrees C) that are substantially lower than the previously reported analogous polymer prepared with an alkyl chain extender. This decrease in Tg and Tm translates to rapid and thorough photomelting and photocrystallization at room temperature with high reversibility. Reversible photoactuation of P(EG-azo) fibers is demonstrated, with bending deformations corresponding to an estimated specific work of 0.6 kJ m-3, 30 times larger than for previous semicrystalline poly(azobenzene) photoactuators at room temperature. In addition, photoalignment of P(EG-azo) through selective melting and templated crystallization provides a convenient and energy efficient route to rewritable orientation with an order parameter of up to S = 0.35.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available