4.7 Review

Recent microfluidic advances in submicron to nanoparticle manipulation and separation

Journal

LAB ON A CHIP
Volume 23, Issue 5, Pages 982-1010

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2lc00793b

Keywords

-

Ask authors/readers for more resources

This paper comprehensively studies the latest progress in microfluidic technology for submicron and nanoparticle manipulation and separation. It summarizes the principles of traditional techniques and explores the physics, device design, working mechanism, and applications of different microfluidic approaches. The merits and demerits of microfluidic techniques are compared to conventional technologies. Seven standard post-separation detection techniques for nanoparticles are summarized, and current challenges and future perspectives on microfluidic technology for nanoparticle manipulation are discussed.
Manipulation and separation of submicron and nanoparticles are indispensable in many chemical, biological, medical, and environmental applications. Conventional technologies such as ultracentrifugation, ultrafiltration, size exclusion chromatography, precipitation and immunoaffinity capture are limited by high cost, low resolution, low purity or the risk of damage to biological particles. Microfluidics can accurately control fluid flow in channels with dimensions of tens of micrometres. Rapid microfluidics advancement has enabled precise sorting and isolating of nanoparticles with better resolution and efficiency than conventional technologies. This paper comprehensively studies the latest progress in microfluidic technology for submicron and nanoparticle manipulation. We first summarise the principles of the traditional techniques for manipulating nanoparticles. Following the classification of microfluidic techniques as active, passive, and hybrid approaches, we elaborate on the physics, device design, working mechanism and applications of each technique. We also compare the merits and demerits of different microfluidic techniques and benchmark them with conventional technologies. Concurrently, we summarise seven standard post-separation detection techniques for nanoparticles. Finally, we discuss current challenges and future perspectives on microfluidic technology for nanoparticle manipulation and separation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available