4.0 Article

Nuclear reactor application on Jeffrey fluid flow with Falkner-skan factor, Brownian and thermophoresis, non linear thermal radiation impacts past a wedge

Journal

JOURNAL OF THE INDIAN CHEMICAL SOCIETY
Volume 100, Issue 2, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jics.2023.100907

Keywords

MHD; Non-linear thermal radiation; Ohmic dissipation; Viscous dissipation; BVP4C; Jeffrey; Brownian and thermophoresis

Ask authors/readers for more resources

This paper investigates the impact of non-linear thermal radiation, Brownian motion, and thermophoresis on an MHD through a wedge for Jeffrey fluid. The study also includes heat transport analysis. The originality of this work lies in the formulation of the Jeffrey fluid, as well as the consideration of nonlinear thermal radiation, Brownian motion, and thermophoresis. Using boundary layer approximations and similarity transformations, the governing equations are transformed into ordinary differential form. The outcomes of velocity, concentration, and temperature fields are determined using the BVP4C numerical method, and the results are analyzed graphically and tabularly. The comparison with previously published data shows a good agreement. The research mainly focuses on modeling flow in a nuclear reactor, where the boundary layer flow caused by a wedge surface is crucial for geothermal and heat exchanger systems.
In this paper, an impact of non-linear thermal radiation, Brownian and thermophoresis on an MHD through a wedge with dissipative impacts for Jeffrey fluid is investigated. In addition, heat transport analysis is carried out. This work's originality is attributable to the Jeffrey fluid formulation, nonlinear thermal radiation, Brownian and Thermophoresis. The boundary layer approximations are examined, to transform the governing equations into partial differential equations. Utilizing appropriate similarity transformations, the boundary value issue is expressed in ordinary differential form. BVP4C, a nonlinear numerical method, was utilized to determine the outcomes of velocity, concentration and temperature fields at multiple points of the measured quantities. The skin friction term, Sherwood and Nusselt numbers were analyzed in depth, and the findings are achieved graphically and tabularly. A comparison via the previously published data reveals a good degree of concordance. This research focuses mostly on the modelling of flow in a nuclear reactor. The boundary layer flow caused by a wedge surface play s a crucial role the aspects of geothermal and heat exchangers systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available