4.6 Article

From Lab to Manufacturing Line: Guidelines for the Development and Upscaling of Aqueous Processed NMC622 Electrodes

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 170, Issue 1, Pages -

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/acb10d

Keywords

-

Ask authors/readers for more resources

In this study, a more environmentally friendly aqueous route was used to prepare high-energy cathode electrodes for lithium-ion batteries. The preparation steps were optimized and the method was successfully upscaled to a semi-industrial electrode coating line. The water-processed electrodes showed better cycling performance compared to the organic-processed ones, indicating the feasibility of manufacturing high energy density LIB electrodes using environmentally friendly and industrially implementable electrode processing methods.
Lithium-ion batteries (LIBs) have facilitated the transition to a more sustainable energy model. Paradoxically, current high energy cathodes are industrially processed using organic solvents, which are deleterious for the environment. In this work, LiNi0.6Mn0.2Co0.2O2 (NMC622) high-energy cathode electrode was prepared at laboratory scale following a more environmentally friendly aqueous route. Several steps in the preparation of the electrodes (such as the drying temperature, drying air flux or pH buffering) were thoroughly optimized to enhance the quality of the water-processed electrodes. Afterwards, the recipe developed at laboratory scale was upscaled to a semi-industrial electrode coating line, to analyze the viability of the developed processing conditions into a realistic electrode manufacturing environment. The electrodes obtained were tested in full coin cells using graphite-based anodes as counter electrodes. Interestingly, the cycling performance of the cells based on water-processed electrodes was higher than that of organic-processed ones. It is evidenced that it is possible to manufacture electrodes for high energy density LIBs following environmentally friendly, cheaper, and industrially implementable electrode processing methods with no-penalty in the electrochemical performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available