4.8 Article

Molecular Z-Scheme for Solar Fuel Production via Dual Photocatalytic Cycles

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 144, Issue 47, Pages 21568-21575

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.2c08462

Keywords

-

Funding

  1. University of South Carolina Advanced Support for Innovative Research Excellence (ASPIRE-1) Track-1
  2. NSF [DMR-1752782]
  3. NSF-MRI program [CHE-1919633]
  4. FSU Department of Chemistry & Biochemistry's Materials Characterization Laboratory [FSU075000MAC]

Ask authors/readers for more resources

This research demonstrates the photocatalytic synthesis of H2 using a multiphoton mechanism, where both a molecular photocatalyst and a substituted naphthol are excited in the presence of a sacrificial electron donor and proton source. The unique use of a naphthol molecule as both a light absorber and H2 producing catalyst offers a new paradigm for the production of solar fuels in uphill reactions.
Natural photosynthesis uses an array of molecular structures in a multiphoton Z-scheme for the conversion of light energy into chemical bonds (i.e., solar fuels). Here, we show that upon excitation of both a molecular photocatalyst (PC) and a substituted naphthol (ROH) in the presence of a sacrificial electron donor and proton source, we achieve photocatalytic synthesis of H2. Data support a multiphoton mechanism that is catalytic with respect to both PC and ROH. The use of a naphthol molecule as both a light absorber and H2 producing catalyst is a unique motif for Z-scheme systems. This molecular Z-scheme can drive a reaction that is uphill by 511 kJ mol-1 and circumvents the high-energy constraints associated with the reduction of weak acids in their ground state, thus offering a new paradigm for the production of solar fuels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available