4.4 Article

Robot-Assisted Gravity Offloading Testing of Aerospace Structures

Journal

JOURNAL OF TESTING AND EVALUATION
Volume 51, Issue 5, Pages 3478-3493

Publisher

AMER SOC TESTING MATERIALS
DOI: 10.1520/JTE20220387

Keywords

active zero-G system; offloading; collaborative robot; IoT platform

Ask authors/readers for more resources

This study proposes a solution for gravity offloading testing of space devices using industrial robots. By taking advantage of collaborative robots and custom auxiliary subsystems, successful gravity compensation was achieved.
The demand for testing aerospace structures on Earth before they are launched into space has led to the development of equipment that is able to simulate orbit conditions, namely zero gravity. Several passive solutions have been proposed to perform offloading testing on Earth. However, they present limitations and lack the flexibility normally required by the complexity of the pathways. Active zero gravity emulation systems have been developed to mitigate the difficulties of the passive ones. Moreover, the emergence of robotic arms with the ability to perform complex and easily reprogrammable motion and force-controlled trajectories has opened the possibility of creating robot-based gravity compensation systems. This paper proposes and evaluates a solution for the gravity offloading testing of space devices based on currently available industrial robots. This solution takes advantage of the functionalities of collaborative robots, namely built-in force controllers, together with custom auxiliary subsystems. A setup was arranged to allow the communication between the robot controller and a computer running an internet of things (IoT) platform based on Node-RED so as to connect and control all components of the offloading system. Multiple robot control techniques were designed and tested based on several approaches employing impedance control functionalities and sensing data to create a closed-loop system. The results obtained are within the validation criteria, creating conditions to affirm for the application in question that the gravity compensation was achieved with success using the robot.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available