4.3 Article

Rigid-Foldable Parabolic Deployable Reflector Concept Based on the Origami Flasher Pattern

Journal

JOURNAL OF SPACECRAFT AND ROCKETS
Volume 60, Issue 3, Pages 728-739

Publisher

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.A35497

Keywords

-

Ask authors/readers for more resources

This paper presents a novel deployable reflector concept based on the origami flasher pattern. The proposed folding architecture achieves rigid foldability for flasher patterns applied to doubly curved surfaces, allowing parabolic reflectors to be divided into a number of rigid panels for efficient stowage. A Bayesian optimization approach is used to find optimal stowage patterns that accommodate finite thickness panels and supporting structures.
This paper presents a novel deployable reflector concept based on the origami flasher pattern. The proposed folding architecture achieves rigid foldability for flasher patterns applied to doubly curved surfaces, allowing parabolic reflectors to be divided into a number of rigid panels for efficient stowage. Such an architecture provides an intermediate solution between current rigid-surface and flexible-surface reflectors, offering both surface precision and stowage compactness. The proposed patterns have a positive-finite degree of mobility, and so reliable and deterministic deployment is realized through suitable actuation. A Bayesian optimization approach is used in conjunction with kinematics and collision models in order to find optimal stowage patterns that accommodate finite thickness panels and supporting structures. For the generated optimal patterns, panel split line geometries are designed analytically to eliminate gaps while avoiding collision at panel edges during folding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available