4.1 Article

Supramolecular and base-induced singlet oxygen generation enhancement of a water-soluble phthalocyanine

Journal

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S1088424623500128

Keywords

Metal phthalocyanine; singlet oxygen; aggregation; supramolecular; hydrogel; fluorescence

Ask authors/readers for more resources

Investigating the ROS-generating abilities of photosensitizers is crucial for the study of photodynamic therapy in clinical settings. The water-soluble photosensitizer ZnPcTS can generate ROS as singlet oxygen under specific irradiation. Incorporating ZnPcTS into a hydrogel material greatly enhances its SO generation rate.
Investigation into the reactive oxygen species (ROS) generating abilities of photosensitizers outside of in-vitro/vivo conditions is a crucial element in the wider study of photodynamic therapy (PDT) in clinical settings. Zinc(II) phthalocyanine tetrasulfonic acid (ZnPcTS) is a water-soluble photosensitizer that can generate ROS as singlet oxygen (SO) under irradiation in the red and far-red region of the electromagnetic spectrum. The incorporation of ZnPcTS into nano-fibers of a bis-imidazolium hydrogel was demonstrated and the material was characterized with photophysical, rheological, and microscopy techniques. This supramolecular material containing ZnPcTS (named ZnPcTS_nEqBase@Gels) was found to significantly enhance the SO generation rate with respect to that of ZnPcTS in an aqueous solution. The effect is attributed mainly to reduced aggregation within the gel microenvironment compared with a solution. Furthermore, the preparation of ZnPcTS_nEqBase@Gels was carried out in the presence of varying amounts (0, 1, 2, 3, 4 eq.) of NaOH to improve the dissolution of ZnPcTSby ensuring full deprotonation of the sulfonate. The gel material containing 4 equivalents of NaOH per phthalocyanine was found to have a significantly greater SO-generating ability than the corresponding material containing no base. This phenomenon was shown to be partially a consequence of reduced aggregation as observed in the spectroscopic characterization. The enhancement in SO generation induced by this type of hybrid material makes it an attractive candidate to be used in different applications when efficient SO production is required.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available