4.8 Article

Effect of Nanoconfinement on NMR Relaxation of Heptane in Kerogen from Molecular Simulations and Measurements

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 14, Issue 4, Pages 1059-1065

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.2c03699

Keywords

-

Ask authors/readers for more resources

In this study, atomistic MD simulations were used to investigate the effects of nanoconfinement on the 1H NMR relaxation times T1 and T2 of heptane in kerogen. The results show that confinement plays an important role in reducing T1 by -3 orders of magnitude, in agreement with experimental measurements. For T2, confinement breaks spatial isotropy and gives rise to residual dipolar coupling, leading to a -5 orders of magnitude reduction compared to bulk heptane. Using the simulated T2, the surface relaxivity was calibrated to predict the pore-size distribution of organic nanopores in kerogen without additional experimental data.
Kerogen-rich shale reservoirs will play a key role during the energy transition, yet the effects of nanoconfinement on the NMR relaxation of hydrocarbons in kerogen are poorly understood. We use atomistic MD simulations to investigate the effects of nanoconfinement on the 1H NMR relaxation times T1 and T2 of heptane in kerogen. In the case of T1, we discover the important role of confinement in reducing T1 by -3 orders of magnitude from that of bulk heptane, in agreement with measurements of heptane dissolved in kerogen from the Kimmeridge Shale, without any models or free parameters. In the case of T2, we discover that confinement breaks spatial isotropy and gives rise to residual dipolar coupling which reduces T2 by -5 orders of magnitude from the value for bulk heptane. We use the simulated T2 to calibrate the surface relaxivity and thence predict the pore-size distribution of the organic nanopores in kerogen, without additional experimental data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available