4.8 Article

Fast Method for Excited-State Dynamics in Complex Systems and Its Application to the Photoactivation of a Blue Light Using Flavin Photoreceptor

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 14, Issue 5, Pages 1222-1229

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.2c03797

Keywords

-

Ask authors/readers for more resources

In this study, we propose a new method that combines the accuracy of a polarizable embedding QM/MM approach with the computational efficiency of an excited-state self-consistent field method to investigate the excited-state dynamics of molecules embedded in complex matrices. We apply this method to the photoactivation of the blue-light-using flavin (BLUF) domain of the AppA protein and demonstrate the presence of a proton-coupled electron transfer (PCET) process, which has been suggested in other BLUF proteins.
The excited-state dynamics of molecules embedded in complex (bio)matrices is still a challenging goal for quantum chemical models. Hybrid QM/MM models have proven to be an effective strategy, but an optimal combination of accuracy and computational cost still has to be found. Here, we present a method which combines the accuracy of a polarizable embedding QM/MM approach with the computational efficiency of an excited-state self-consistent field method. The newly implemented method is applied to the photoactivation of the blue-light-using flavin (BLUF) domain of the AppA protein. We show that the proton-coupled electron transfer (PCET) process suggested for other BLUF proteins is still valid also for AppA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available