4.6 Article

Design of Anisotropically Shaped Plasmonic Nanocrystals from Ultrasmall Sn-Decorated In2O3 Nanoclusters Used as Seed Materials

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 126, Issue 50, Pages 21438-21452

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.2c06572

Keywords

-

Funding

  1. National Science Foundation [ECCS-2025064]
  2. National Institute of Justice grant [2018-75-CX-0034]
  3. [DMR-1747582]

Ask authors/readers for more resources

This study reports the synthesis and characterization of <2.0 nm indium oxide nanoclusters. The nanoclusters exhibit unique optical properties and can be used as building blocks for the synthesis of tunable plasmonic nanocrystals. The findings contribute to the understanding of the growth process and properties of ultrasmall metal oxide nanoclusters.
Ultrasmall inorganic nanodusters (<2.0 nm in diameter) bridge the gap between individual molecules and large nanocrystals (NCs) and provide the critical foundation to design and prepare new solid-state nanomaterials with previously unknown properties and functions. Herein, for the first time, we report the monodispersed colloidal synthesis and successful isolation of metastable, rhombohedral-phase, <2.0 nm indium oxide (In2O3) nanoclusters. Ultrasmall nanocluster formation is controlled by a kinetically driven growth process, as evaluated through the variation of metal-to-passivating ligand concentrations. Although <2.0 nm-diameter In2O3 nanoclusters are synthesized in the presence of tin (Sn) precursors, they do not display typical localized surface plasmon resonance (LSPR) properties, which are commonly observed in Sn-doped In2O3 (Sn:In2O3) NCs. Our Raman and X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy (HRTEM) analyses support the existence of Sn-decorated In2O3 nanoclusters, where Sn complexes reside on the surface of the nanocluster as Z-type ligands, as opposed to the formation of Sn:In(2)O(3 )nanoclusters, whidi behave as wide band gap (similar to 5.5 eV) nanomaterials. The experimentally determined band gap is in good agreement with the theoretical effective mass calculations. The newly synthesized Sn-decorated, 1.7 nm-diameter In2O3 nanodusters are further used as reactive monomers for the seeded growth synthesis of bcc-phase, plasmonic Sn:In2O3 NCs via ex situ injection of In precursors without the addition of any Sn precursors. The LSPR peak of Sn:In2O3 NCs, which appear to form nanoflower assemblies, is tunable in the 1800-4000 nm region and possibly even the deep-IR region. In addition to altering the size and assembly of the spherical Sn:In2O3 NCs by introducing different amounts of indium acetylacetonate, injection of indium chloride precursors in the reaction mixture results in the formation of rod-shaped NCs. Surprisingly, Sn-decorated, <1.5 nm-diameter In2O3 nanodusters do not grow into large plasmonic Sn:In2O3 NCs. Taken together, the results presented here contribute to the fundamental understanding of the surface free energy of ultrasmall metal oxide nanoclusters and further advance the knowledge on the phase transformation and growth of plasmonic NCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available