4.3 Article

Verification and Validation of Computational Fluid Dynamic Simulations of a FOWT Semi-Submersible Under Bichromatic and Random Waves

Publisher

ASME
DOI: 10.1115/1.4056421

Keywords

computational fluid dynamics; dynamics of structures; hydrodynamics

Ask authors/readers for more resources

In this study, an extensive verification and validation analysis was conducted to evaluate the accuracy and credibility of computational fluid dynamic (CFD) simulations of the hydrodynamic responses of a semi-submersible floating offshore wind turbine (FOWT) platform under bichromatic waves and random waves. The results show that the use of CFD code provides more consistent results with experimental values.
In the present work, an extensive verification and validation study is performed to evaluate the accuracy and credibility for computational fluid dynamic (CFD) simulations of the hydrodynamic responses of a semi-submersible floating offshore wind turbine (FOWT) platform under bichromatic waves and random waves. A dynamic mooring model is coupled with the CFD code to accurately simulate the mooring system. For the bichromatic wave cases, the surge, heave, and pitch response amplitude operators (RAOs) at wave frequencies, mean surge offset and mean surge force of the semi-submersible platform are investigated. The numerical uncertainties of the above metrics are quantified, which are primarily sourced from the discretization uncertainty. For the random wave cases, the surge, heave, and pitch power spectral density (PSD) sums in wave frequency range and low frequency range are validated against the experimental results. The numerical uncertainty derived from the bichromatic wave cases is applied in the validation of the random wave cases. The PSD sums in wave frequency range have achieved the validation within the validation uncertainty. Though the PSD sums in low-frequency range are under-predicted, the results with the utilization of the CFD code agree more with the experimental value than the results from mid-fidelity tools.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available