4.7 Article

Discovery of Novel Pyrazolylpyridine Derivatives for 20-Hydroxyeicosatetraenoic Acid Synthase Inhibitors with Selective CYP4A11/4F2 Inhibition

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 65, Issue 21, Pages 14599-14613

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jmedchem.2c01089

Keywords

-

Ask authors/readers for more resources

20-HETE is an important metabolite involved in the pathogenesis of renal diseases, and inhibiting its production by targeting CYP4A11 and CYP4F2 may provide a therapeutic strategy. Compound 11c, an acetylpiperidine derivative, has been identified as a potent inhibitor of 20-HETE production with favorable pharmacokinetic properties.
20-Hydroxyeicosatetraenoic acid (20-HETE) is one of the major oxidized arachidonic acid (AA) metabolites produced by cytochrome P450 (CYP) 4A11 and CYP4F2 isozymes in the human liver and kidney. Numerous studies have suggested the involvement of 20-HETE in the pathogenesis of renal diseases, and suppression of 20-HETE production by inhibition of CYP4A11 and CYP4F2 may be an attractive therapeutic strategy for renal diseases. At first, we identified methylthiazole derivative 2 as a potent dual inhibitor of CYP4A11 and CYP4F2. An optimization study of a series of derivatives with a molecular weight of around 300 to improve aqueous solubility and selectivity against drug-metabolizing CYPs while maintaining the CYP4A11-and CYP4F2-inhibitory activities led to the identification of acetylpiperidine compound 11c. Compound 11c inhibited 20-HETE production in both human and rat renal microsomes and exhibited a favorable pharmacokinetic profile. Furthermore, 11c also significantly inhibited renal 20-HETE production in Sprague-Dawley rats after oral dosing at 0.1 mg/kg.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available