4.3 Article

Habitat Diversity, Stability, and Productivity of Malaria Vectors in Irrigated and Nonirrigated Ecosystems in Western Kenya

Journal

JOURNAL OF MEDICAL ENTOMOLOGY
Volume 60, Issue 1, Pages 202-212

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/jme/tjac168

Keywords

environmental modification; irrigation; larval ecology; malaria; Anopheles

Ask authors/readers for more resources

This study examined the impact of irrigation on the ecology of malaria vectors in a semi-arid region of western Kenya. The results showed that irrigation increased habitat availability and stability, leading to an increase in mosquito reproduction and potential risk of malaria transmission.
Several sub-Saharan African countries rely on irrigation for food production. This study examined the impact of environmental modifications resulting from irrigation on the ecology of aquatic stages of malaria vectors in a semi-arid region of western Kenya. Mosquito larvae were collected from irrigated and non-irrigated ecosystems during seasonal cross-sectional and monthly longitudinal studies to assess habitat availability, stability, and productivity of anophelines in temporary, semipermanent, and permanent habitats during the dry and wet seasons. The duration of habitat stability was also compared between selected habitats. Emergence traps were used to determine the daily production of female adult mosquitoes from different habitat types. Malaria vectors were morphologically identified and sibling species subjected to molecular analysis. Data was statistically compared between the two ecosystems. After aggregating the data, the overall malaria vector productivity for habitats in the two ecosystems was estimated. Immatures of the malaria vector (Anopheles arabiensis) Patton (Diptera: Culicidae) comprised 98.3% of the Anopheles in both the irrigated and non-irrigated habitats. The irrigated ecosystem had the most habitats, higher larval densities, and produced 85.8% of emerged adult females. These results showed that irrigation provided conditions that increased habitat availability, stability, and diversity, consequently increasing the An. arabiensis production and potential risk of malaria transmission throughout the year. The irrigated ecosystems increased the number of habitats suitable for Anopheles breeding by about 3-fold compared to non-irrigated ecosystems. These results suggest that water management in the irrigation systems of western Kenya would serve as an effective method for malaria vector control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available