4.7 Article

Adsorptive and photocatalytic performance of cobalt-doped ZnTiO3/Ti3C2Tx MXene nanohybrids towards tetracycline: Kinetics and mechanistic insight

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 443, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2022.130165

Keywords

ZnTiO3; MXene; Adsorption; Photodegradation; Tetracycline

Ask authors/readers for more resources

In this study, cobalt doped/ZnTiO3/Ti3C2Tx MXene material was synthesized and found to have excellent performance in the adsorption and photocatalytic degradation of tetracycline antibiotics. The material showed high adsorption capacity and degradation rate, suggesting its potential application in removing tetracycline antibiotics widely used in animal husbandry.
Tetracycline (TC) antibiotics are widely used in animal husbandry and can cause environmental risk due to its high ecological toxicity and persistence. In this study, cobalt doped/ZnTiO3 (ZTO)/Ti3C2Tx MXene (ZCxTM, x indicates wt% of Co loading) was synthesized and explored to remove TC by adsorption and photocatalysis under visible light irradiation. The as-prepared ZC5TM was characterized using various analytical techniques, and key operating parameters such as solution pH, background ions, and temperature were systematically investigated. Interestingly, ZC5TM (14.9 mg/g) showed excellent adsorption capacity for TC, which was higher than activated carbon (7.7 mg/g), ZTO (4.9 mg/g), ZC3T (5.2 mg/g), ZC5T (5.3 mg/g), MXene (12.1 mg/g), ZTOM (12.5 mg/g), and ZC3TM (12.9 mg/g). The pseudo-second-order kinetics and Langmuir isotherm models well explained the effect of contact time and initial concentrations on the adsorption of TC. The adsorption process was primarily through the electrostatic attraction, surface complexation, and hydrogen bonding. In addition, MXene and Co doped on ZTO served as co-catalyst and reduced recombination rate of photo-generated e--h+ pairs by the intimate interface of its heterojunction. Thus, ZC5TM was highly effective for the photocatalytic degradation of residual TC after adsorption by showing 18% TC degradation rate, compared to 8% and 9% degradation rate for ZTO and MXene, respectively. There results finally support the feasible use of ZC5TM as efficient adsorbent and photocatalyst in removal of TC in wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available