4.4 Article

An Unsupervised Machine Learning Based Double Sweet Spots Classification and Evaluation Method for Tight Reservoirs

Publisher

ASME
DOI: 10.1115/1.4056727

Keywords

tight gas reservoirs; geological sweet spot; engineering sweet spot; machine learning; reservoir classification

Categories

Ask authors/readers for more resources

In this study, a double sweet spot analysis system and an optimization method for sweet spot parameters were proposed. Unsupervised machine learning algorithms were used to determine the classification standard of general reservoirs and high-quality sweet spot reservoirs. The results show that this method can accurately locate the sweet spot in gas fields.
With the increasing exploration and development of tight sandstone gas reservoirs, it is of utmost importance to clarify the characteristics of sweet spots within tight gas reservoirs. Considering the complex lithology of tight gas reservoirs, fast phase transformations of sedimentary facies, and vital diagenetic transformation, there is a low success rate of reservoir prediction in the lateral direction, and heterogeneity evaluation is challenging. Establishing a convenient standard for reservoir interpretation in the early stages of development is complex, making designing hydraulic fracturing in the later phases a challenge. In this paper, we propose a detailed study of the engineering and geological double sweet spots (DSS) analysis system and the optimization of sweet spot parameters using the independent weight coefficient method. K-means++ algorithm and Gaussian mixture gradient algorithm unsupervised machine learning algorithms are used to determine the classification standard of general reservoirs and high-quality sweet spot reservoirs in the lower 1 layer of He-8 in the x block of the Sulige gas field. This application of the field example illustrates that the proposed double sweet spot classification and evaluation method can be applied to locate the reservoir's sweet spot accurately.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available