4.7 Article

Landscape-scale drivers of liana load across a Southeast Asian forest canopy differ to the Neotropics

Journal

JOURNAL OF ECOLOGY
Volume 111, Issue 1, Pages 77-89

Publisher

WILEY
DOI: 10.1111/1365-2745.14015

Keywords

boosted regression trees; drone; gap ecology; liana ecology; remote sensing; tropical forest canopy science; UAV; unmanned aerial vehicle

Ask authors/readers for more resources

This study examines liana distribution in Southeast Asian forests using advanced techniques such as drones. It finds that tree height and distance to canopy gaps are the most important predictors of liana load, contradicting findings in the Neotropics. These results highlight the need for more research on lianas in different biogeographic regions to better understand their impacts on tropical forest ecology and carbon storage.
Lianas (woody vines) are a key component of tropical forests, known to reduce forest carbon storage and sequestration and to be increasing in abundance. Analysing how and why lianas are distributed in forest canopies at landscape scales will help us determine the mechanisms driving changes in lianas over time. This will improve our understanding of liana ecology and projections of tropical forest carbon storage now and into the future. Despite competing hypotheses on the mechanisms driving spatial patterning of lianas, few studies have integrated multiple tree-level biotic and abiotic factors in an analytical framework. None have done so in the Palaeotropics, which are biogeographically and evolutionarily distinct from the Neotropics, where most research on lianas has been conducted. We used an unoccupied aerial system (UAS; drone) to assess liana load in 50-ha of Palaeotropical forest canopy in Southeast Asia. We obtained data on hypothesised drivers of liana spatial distribution in the forest canopy, including disturbance, tree characteristics, soil chemistry and topography, from the UAS, from airborne LiDAR and from ground surveys. We integrated these in a comprehensive analytical framework to extract variables at an individual-tree level and evaluated the relative strengths of the hypothesised drivers and their ability to predict liana distributions through boosted regression tree (BRT) modelling. Tree height and distance to canopy gaps were the two most important predictors of liana load, with relative contribution values in BRT models of 34.60%-45.39% and 7.93%-10.19%, respectively. Our results suggest that taller trees were less often and less heavily infested by lianas than shorter trees, opposite to Neotropical findings. Lianas also occurred more often, and to a greater extent, in tree crowns close to canopy gaps and to neighbouring trees with lianas in their crown. Synthesis. Despite their known importance and prevalence in tropical forests, lianas are not well understood, particularly in the Palaeotropics. Examining 2428 trees across 50-ha of Palaeotropical forest canopy in Southeast Asia, we find support for the hypothesis that canopy gaps promote liana infestation. However, we also found that liana presence and load declined with tree height, which is opposite to well-established Neotropical findings. This suggests a fundamental difference between Neotropical and Southeast Asian forests. Considering that most liana literature has focused on the Neotropics, this highlights the need for additional studies in other biogeographic regions to clarify potential differences and enable us to better understand liana impacts on tropical forest ecology, carbon storage and sequestration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available