4.7 Article

A genomic assessment of the correlation between milk production traits and claw and udder health traits in Holstein dairy cattle

Journal

JOURNAL OF DAIRY SCIENCE
Volume 106, Issue 2, Pages 1190-1205

Publisher

ELSEVIER SCIENCE INC
DOI: 10.3168/jds.2022-22312

Keywords

disease traits; milk traits; genetic correlations; GWAS

Ask authors/readers for more resources

This study conducted a detailed analysis of milk production and disease traits in dairy cattle and their genetic correlations. By analyzing the genotypes of 34,497 German Holstein cows, the study found shared genetic effects between milk production and disease traits on a genetic level, as well as identified specific genomic regions affecting these trait combinations. These findings provide important insights into the underlying biological pathways and can be utilized in breeding schemes for more precise designs.
Claw diseases and mastitis represent the most important disease traits in dairy cattle with increasing incidences and a frequently mentioned connection to milk yield. Yet, many studies aimed to detect the genetic background of both trait complexes via fine-mapping of quantitative trait loci. However, little is known about genomic regions that simultaneously affect milk production and disease traits. For this purpose, several tools to detect local genetic correlations have been developed. In this study, we attempted a detailed analysis of milk production and disease traits as well as their interrelationship using a sample of 34,497 50K genotyped German Holstein cows with milk production and claw and udder disease traits records. We performed a pedigree-based quantitative genetic analysis to estimate heritabilities and genetic correlations. Additionally, we generated GWAS summary statistics, paying special attention to genomic inflation, and used these data to identify shared genomic regions, which affect various trait combinations. The heritability on the liability scale of the disease traits was low, between 0.02 for laminitis and 0.19 for interdigital hyperplasia. The heritabilities for milk production traits were higher (between 0.27 for milk energy yield and 0.48 for fat-protein ratio). Global genetic correlations indicate the shared genetic effect between milk production and disease traits on a whole genome level. Most of these estimates were not significantly different from zero, only mastitis showed a positive one to milk (0.18) and milk energy yield (0.13), as well as a negative one to fat-protein ratio (-0.07). The genomic analysis revealed significant SNPs for milk production traits that were enriched on Bos taurus autosome 5, 6, and 14. For digital dermatitis, we found significant hits, predominantly on Bos taurus autosome 5, 10, 22, and 23, whereas we did not find significantly trait-associated SNPs for the other disease traits. Our results confirm the known genetic background of disease and milk production traits. We further detected 13 regions that harbor strong concordant effects on a trait combination of milk production and disease traits. This detailed investigation of genetic correlations reveals additional knowledge about the localization of regions with shared genetic effects on these trait complexes, which in turn enables a better understanding of the underlying biological pathways and putatively the utilization for a more precise design of breeding schemes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available