4.7 Article

Photocatalytic degradation of paracetamol using photo-Fenton-like metal-organic framework-derived CuO@C under visible LED

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 379, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2022.134571

Keywords

MOFs; Paracetamol; Photodegradation; Visible LED; H 2 O 2 activation

Funding

  1. Hong Kong Polytechnic University
  2. Science, Technology & Innovation Funding Authority (STDF)
  3. [35969]

Ask authors/readers for more resources

The study utilized a copper-based metal-organic framework-derived catalyst for the photodegradation of paracetamol, observing a unique enhancement effect at extreme pH 9.9 and identifying two new substances among eight intermediates.
Metal-organic framework (MOFs) based photocatalysis has received great attention recently as a promising technology for sustainable environmental applications. Herein, hydrogen peroxide (H2O2) activation with a copper-based metal-organic framework-derived catalyst (CuO@C) was applied for the photodegradation of a widely used analgesic paracetamol drug (PCM) under an energy-efficient visible light-emitted diode (LED) as a light source for the first time. The incorporation of CuO@C with H2O2 offered a photo-Fenton-like reaction that accelerated the PCM photodegradation, where 95% of paracetamol was degraded in 60 min. Interestingly, a novel N-curve pH trend was observed due to an independent boost of the PCM degradation at extreme pHi 9.9. The redeposition of Cu to the CuO@C surface is likely the critical mechanism for minimizing Cu leaching and maintaining good catalyst reusability. Eight intermediates were identified and two of them were newly reported. Surprisingly, no dimerization route was observed as previously reported in other processes. Additionally, a mineralization degree of 68% was achieved which proved the merit of the CuO@C/H2O2/visible LED process for practical applications. This work can provide new insights on the application of Cu-based MOFs as rationale candidates for the remediation of emerging contaminants in wastewater by H2O2 activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available