4.7 Article

Life cycle assessment of upcycling waste slag via CO2 pre-treatment: Comparative study of carbonation routes

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 378, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2022.134115

Keywords

Yellow phosphorus slag; Basic oxygen furnace slag; Dry carbonation; Aqueous carbonation; Life cycle assessment; Sensitivity analysis

Funding

  1. National Natural Science Foundation of China (NSFC) (Research Fund for International Senior Scientists)
  2. [52250710158]

Ask authors/readers for more resources

Accelerated carbonation of industrial by-products is an effective method to convert waste into valuable construction materials. Dry carbonation has slow reaction and low CO2 fixation efficiency, while the challenge of aqueous carbonation is water consumption. This study evaluated the environmental impact of carbonation and the use of CO2-treated waste slags as cement replacements.
Accelerated carbonation of industrial by-products such as yellow phosphorus slag (YPS) and basic oxygen furnace slag (BOFS) is an effective method to convert waste into valuable construction materials. Accelerated carbonation or CO2 sequestration can be conducted directly under dry or aqueous conditions. However, the slow reaction and low CO2 fixation efficiency of dry carbonation hinder the successful development of accelerated carbonation, whereas water consumption is the key challenge of aqueous carbonation for industrial applications. Therefore, this study evaluated the environmental impact of carbonation of YPS and BOFS via dry and aqueous routes, and upcycling these CO2-treated waste slags as cement replacements. The environmental impacts, including midpoint and endpoint impact, were quantified using life cycle assessment (LCA) by applying the ReCiPe methodology. The LCA results show that aqueous carbonation generates lower carbon emissions (11.3% and 214.0%) and human carcinogenic toxicity (2.4% and 0.2%) than dry carbonation for YPS and BOFS, but is accompanied by more serious impacts on mineral resource scarcity and water consumption. On the other hand, aqueous carbonation of BOFS generates lower (or even negative) carbon emissions than aqueous carbonation of YPS, and the same results can be found for human carcinogenic toxicity, mineral resource scarcity and water consumption. Sensitivity analysis shows that prolonged carbonation, particularly in the case of dry routes, results in very high carbon emissions. Apart from carbon emission benefits, using 20% aqueous carbonated YPS and 20% aqueous carbonated BOFS as cement replacements exhibited minimal impact of mechanical strength reduction, as compared with pure cement paste samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available