4.5 Article

Preparation of 3D printed calcium sulfate filled PLA scaffolds with improved mechanical and degradation properties

Journal

JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
Volume 34, Issue 10, Pages 1408-1429

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09205063.2023.2167374

Keywords

Composite filament; fused filament fabrication; 3D printing; porous scaffolds; mechanical strength; degradation; tissue engineering

Ask authors/readers for more resources

In this study, a hybrid polymer-ceramic scaffold was prepared using 3D printing technology, combining PLA and CaS materials. The scaffolds showed good thermal stability, mechanical properties, and porosity, making them suitable for tissue engineering applications.
Scaffold is one of the key components for tissue engineering application. Three-dimensional (3D) printing has given a new avenue to the scaffolds design to closely mimic the real tissue. However, material selection has always been a challenge in adopting 3D printing for scaffolds fabrication, especially for hard tissue. The fused filament fabrication technique is one of the economical 3D printing technology available today, which can efficiently fabricate scaffolds with its key features. In the present study, a hybrid polymer-ceramic scaffold has been prepared by combining the benefit of synthetic biodegradable poly (lactic acid) (PLA) and osteoconductive calcium sulphate (CaS), to harness the advantage of both materials. Composite PLA filament with maximum ceramic loading of 40 wt% was investigated for its printability and subsequently scaffolds were 3D printed. The composite filament was extruded at a temperature of 160 degrees C at a constant speed with an average diameter of 1.66 +/- 0.34 mm. PLA-CaS scaffold with ceramic content of 10%, 20%, and 40% was 3D printed with square pore geometry. The developed scaffolds were characterized for their thermal stability, mechanical, morphological, and geometrical accuracy. The mechanical strength was improved by 29% at 20 wt% of CaS. The porosity was found to be 50-60% with an average pore size of 550 mu m with well-interconnected pores. The effect of CaS particles on the degradation behaviour of scaffolds was also assessed over an incubation period of 28 days. The CaS particles acted as porogen and improved the surface chemistry for future cellular activity, while accelerating the degradation rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available