4.3 Article

Sequential changes in cellular properties accompanying amniote somite formation

Journal

JOURNAL OF ANATOMY
Volume 242, Issue 3, Pages 417-435

Publisher

WILEY
DOI: 10.1111/joa.13791

Keywords

cell adhesion; cell polarity; epithelial-mesenchymal transition; mesenchymal-epithelial transition; segmentation; vertebral column

Ask authors/readers for more resources

This study examines the cellular processes involved in somite formation and reveals that the progression of events differs from previous models. The use of various microscopy techniques provides detailed insights into the cell shape and polarity changes during this process.
Somites are transient structures derived from the pre-somitic mesoderm (PSM), involving mesenchyme-to-epithelial transition (MET) where the cells change their shape and polarize. Using Scanning electron microscopy (SEM), immunocytochemistry and confocal microscopy, we study the progression of these events along the tail-to-head axis of the embryo, which mirrors the progression of somitogenesis (younger cells located more caudally). SEM revealed that PSM epithelialization is a gradual process, which begins much earlier than previously thought, starting with the dorsalmost cells, then the medial ones, and then, simultaneously, the ventral and lateral cells, before a somite fully separates from the PSM. The core (internal) cells of the PSM and somites never epithelialize, which suggests that the core cells could be 'trapped' within the somitocoele after cells at the surfaces of the PSM undergo MET. Three-dimensional imaging of the distribution of the cell polarity markers PKC zeta, PAR3, ZO1, the Golgi marker GM130 and the apical marker N-cadherin reveal that the pattern of polarization is distinctive for each marker and for each surface of the PSM, but the order of these events is not the same as the progression of cell elongation. These observations challenge some assumptions underlying existing models of somite formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available