4.7 Article

Grain-size effects on the temperature-dependent elastocaloric cooling performance of polycrystalline NiTi alloy

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 927, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2022.166951

Keywords

Shape memory alloy; Grain size; Temperature dependence; Elastocaloric cooling; Martensitic transformation

Ask authors/readers for more resources

The study investigates the effects of grain size on the temperature-dependent elastocaloric cooling performance of NiTi. It shows that refining the grain size improves the thermal stability of superelasticity but results in a trade-off between cooling temperature drop and effective working temperature span. By adjusting the grain size, a balance can be achieved between cooling efficiency and performance.
Grain-size (GS) effects on the temperature-dependent elastocaloric cooling performance of NiTi with the average GS of 11, 22, 30, 45 and 70 nm are investigated over a temperature range from-50 degrees C to 80 degrees C. It is found that GS refinement is conducive to improving the thermal stability of superelasticity and the asso-ciated elastocaloric effect, while the trade-off between cooling temperature drop AT and effective working temperature span Tspan, more or less, is inevitable regardless of GS. The large AT of the 70 nm-GS specimen, which is characterized by sharp first-order martensitic transformation and strong temperature dependence of the transformation stress d sigma tr/dT (= 5.7 MPa/degrees C), is restricted to a narrow Tspan (= 19 degrees C). Tspan can be widened by five times via reducing GS to 11 nm but at the expense of a significant sacrifice in AT, as the combined result of high strength and small d sigma tr/dT (= 0.9 MPa/degrees C). Among the five microstructures, the 30 nm-GS one achieves a favorable compromise between AT and Tspan owing to the mild transformation nature together with robust mechanical properties. Consequently, its AT can reach 50% & ndash; 440% of that of the 70 nm-GS counterpart and the resultant cooling efficiency can be enhanced by a factor of half to six. The work demonstrates that GS engineering is a feasible approach for reconciling various elastocaloric cooling metrics of the NiTi refrigerant. (c) 2022 Elsevier B.V. All rights reserved. Superscript/Subscript Available

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available