4.7 Article

Ligand-Based Drug Design of Novel Antimicrobials against Staphylococcus aureus by Targeting Bacterial Transcription

Journal

Publisher

MDPI
DOI: 10.3390/ijms24010339

Keywords

Staphylococcus aureus; ligand-based drug design; pharmacophore; QSAR; virtual screening

Ask authors/readers for more resources

Staphylococcus aureus is a common pathogen that causes infectious diseases, including drug-resistant strains. The study developed a ligand-based workflow to identify potential antimicrobials against S. aureus by targeting bacterial transcription. Four compounds were identified as potential antimicrobials, with strong binding affinity to NusB.
Staphylococcus aureus is a common human commensal pathogen that causes a wide range of infectious diseases. Due to the generation of antimicrobial resistance, the pathogen becomes resistant to more and more antibiotics, resulting in methicillin-resistant S. aureus (MRSA) and even multidrug-resistant S. aureus (MDRSA), namely 'superbugs'. This situation highlights the urgent need for novel antimicrobials. Bacterial transcription, which is responsible for bacterial RNA synthesis, is a valid but underutilized target for developing antimicrobials. Previously, we reported a novel class of antimicrobials, coined nusbiarylins, that inhibited bacterial transcription by interrupting the protein-protein interaction (PPI) between two transcription factors NusB and NusE. In this work, we developed a ligand-based workflow based on the chemical structures of nusbiarylins and their activity against S. aureus. The ligand-based models-including the pharmacophore model, 3D QSAR, AutoQSAR, and ADME/T calculation-were integrated and used in the following virtual screening of the ChemDiv PPI database. As a result, four compounds, including J098-0498, 1067-0401, M013-0558, and F186-026, were identified as potential antimicrobials against S. aureus, with predicted pMIC values ranging from 3.8 to 4.2. The docking study showed that these molecules bound to NusB tightly with the binding free energy ranging from -58 to -66 kcal/mol.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available