4.7 Article

OsMKKK70 Negatively Regulates Cold Tolerance at Booting Stage in Rice

Journal

Publisher

MDPI
DOI: 10.3390/ijms232214472

Keywords

cold tolerance at booting stage; gibberellin; OsMKKK70; rice

Funding

  1. Natural Science Foundation of Heilongjiang [JQ2020C003]
  2. Youth Innovation Promotion Association CAS [2021229]

Ask authors/readers for more resources

Cold stress during the booting stage of rice can negatively affect seed setting, and OsMKKK70 gene plays a negative regulatory role in the cold tolerance of rice by fine-tuning gibberellin levels in anthers.
Cold stress at the booting stage leads to a lower seed setting rate and seriously threatens the production of rice (Oryza sativa L.), which has become a major yield-limiting factor in higher-altitude and -latitude regions. Because cold tolerance at the booting stage (CTB) is a complex trait and is controlled by multiple loci, only a few genes have been reported so far. In this study, a function of OsMKKK70 (Mitogen Activated Protein Kinase Kinase Kinase 70) in response to CTB was characterized. OsMKKK70 expression was rapidly induced by cold stress at the booting stage. OsMKKK70 overexpression (OsMKKK70-OE) plants were more sensitive to cold stress at the booting stage with a lower seed setting and pollen fertility, but there was no significant difference between the osmkkk70 mutant and WT. Considering the effect of functional redundancy, we further tested the CTB response of osmkkk62/70 and osmkkk55/62/70, the double and triple mutants of OsMKKK70 with its closest homologs OsMKKK62 and OsMKKK55, and found that osmkkk62/70 and osmkkk55/62/70 displayed significantly increased CTB with a higher seed setting and pollen fertility, indicating that OsMKKK70 negatively regulates rice CTB. Moreover, under the low-temperature (LT) condition, the osmkkk62/70 mutant had slightly higher Gibberellin (GA) contents, increased expression of GA biosynthesis genes, and lower protein level of OsSLR1 in anthers than those in WT. By contrast, OsMKKK70-OE anther had a lower GA biosynthesis than that of WT. Together, these findings suggest that OsMKKK70 negatively regulates rice CTB by fine-tuning GA levels in anthers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available