4.7 Review

Implication of the Gut Microbiome and Microbial-Derived Metabolites in Immune-Related Adverse Events: Emergence of Novel Biomarkers for Cancer Immunotherapy

Journal

Publisher

MDPI
DOI: 10.3390/ijms24032769

Keywords

irAEs; ICI; anti-PD1 immunotherapy; gut microbiome; metabolome

Ask authors/readers for more resources

Immune checkpoint inhibitors have revolutionized tumor management, but they can also lead to immune-related adverse effects (irAEs). Recent research has found a link between irAEs and the gut microbiome, suggesting that specific microbial patterns and metabolites might be associated with the severity of toxicity symptoms. Identifying these biological factors could help predict and manage irAEs more effectively.
Immune checkpoint inhibitors (ICIs) have changed how we think about tumor management. Combinations of anti-programmed death ligand-1 (PD-L1) immunotherapy have become the standard of care in many advanced-stage cancers, including as a first-line therapy. Aside from improved anti-tumor immunity, the mechanism of action of immune checkpoint inhibitors (ICIs) exposes a new toxicity profile known as immune-related adverse effects (irAEs). This novel toxicity can damage any organ, but the skin, digestive and endocrine systems are the most frequently afflicted. Most ICI-attributed toxicity symptoms are mild, but some are severe and necessitate multidisciplinary side effect management. Obtaining knowledge on the various forms of immune-related toxicities and swiftly changing treatment techniques to lower the probability of experiencing severe irAEs has become a priority in oncological care. In recent years, there has been a growing understanding of an intriguing link between the gut microbiome and ICI outcomes. Multiple studies have demonstrated a connection between microbial metagenomic and metatranscriptomic patterns and ICI efficacy in malignant melanoma, lung and colorectal cancer. The immunomodulatory effect of the gut microbiome can have a real effect on the biological background of irAEs as well. Furthermore, specific microbial signatures and metabolites might be associated with the onset and severity of toxicity symptoms. By identifying these biological factors, novel biomarkers can be used in clinical practice to predict and manage potential irAEs. This comprehensive review aims to summarize the clinical aspects and biological background of ICI-related irAEs and their potential association with the gut microbiome and metabolome. We aim to explore the current state of knowledge on the most important and reliable irAE-related biomarkers of microbial origin and discuss the intriguing connection between ICI efficacy and toxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available