4.7 Article

Photodynamic Therapy of Aluminum Phthalocyanine Tetra Sodium 2-Mercaptoacetate Linked to PEGylated Copper-Gold Bimetallic Nanoparticles on Colon Cancer Cells

Journal

Publisher

MDPI
DOI: 10.3390/ijms24031902

Keywords

aluminum phthalocyanine; photodynamic therapy; PEGylated nanoparticles; colon cancer

Ask authors/readers for more resources

This study reports on the synthesis, characterization, and photodynamic therapy efficacy of a novel aluminium (III) chloride phthalocyanine (AlClPcTS41) and its conjugation to PEGylated copper-gold nanoparticles (PEG-CuAuNPs) for colon cancer treatment. The AlClPcTS41-PEG-CuAuNPs demonstrated significant photodynamic therapy effects, leading to decreased cell viability and potential apoptosis induction in Caco-2 cells. These findings highlight the potential of AlClPcTS41 and AlClPcTS41-PEG-CuAuNPs in enhancing the cytotoxic effect of photodynamic therapy.
This work reports for the first time on the synthesis, characterization, and photodynamic therapy efficacy of the novel aluminium (III) chloride 2(3), 9(10), 16(17), 23(24)-tetrakis-(sodium 2-mercaptoacetate) phthalocyanine (AlClPcTS41) when alone and when conjugated to PEGylated copper-gold bimetallic nanoparticles (PEG-CuAuNPs) as photosensitizers on colon cancer cells (Caco-2). The novel AlClPcTS41 was covalently linked to the PEG-CuAuNPs via an amide bond to form AlClPcTS41-PEG-CuAuNPs. The amide bond was successfully confirmed using FTIR while the crystal structures were studied using XRD. The morphological and size variations of the PEG-CuAuNPs and AlClPcTS41-PEG-CuAuNPs were studied using TEM, while the hydrodynamic sizes and polydispersity of the particles were confirmed using DLS. The ground state electron absorption spectra were also studied and confirmed the typical absorption of metallated phthalocyanines and their nanoparticle conjugates. Subsequently, the subcellular uptake, cellular proliferation, and PDT anti-tumor effect of AlClPcTS41, PEG-CuAuNPs, and AlClPcTS41-PEG-CuAuNPs were investigated within in vitro Caco-2 cells. The designed AlClPcTS41 and AlClPcTS41-PEG-CuAuNPs demonstrated significant ROS generation abilities that led to the PDT effect with a significantly decreased viable cell population after PDT treatment. These results demonstrate that the novel AlClPcTS41 and AlClPcTS41-PEG-CuAuNPs had remarkable PDT effects against Caco-2 cells and may trigger apoptosis cell death pathway, indicating the potential of the AlClPcTS41 and AlClPcTS41-PEG-CuAuNPs in enhancing the cytotoxic effect of PDT treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available