4.7 Article

A MYB Transcription Factor Atlas Provides Insights into the Evolution of Environmental Adaptations in Plants

Journal

Publisher

MDPI
DOI: 10.3390/ijms24032566

Keywords

green plants; MYB gene; evolution; environmental adaptation; HGT; neo-; sub-functionalization

Ask authors/readers for more resources

This study conducted a comprehensive analysis of the MYB superfamily in 437 different plant species to explore its evolutionary contributions to species diversification, trait formation, and environmental adaptation. The research revealed major changes in gene copy number and genomic context within subclades and proposed the role of transposable element insertion in promoting sub-/neo-functionalization of MYB genes. It emphasizes the importance of lineage-/tissue-specific characterization to understand trait variability and environmental adaptation.
The MYB transcription factor superfamily includes key regulators of plant development and responses to environmental changes. The diversity of lifestyles and morphological characteristics exhibited by plants are potentially associated with the genomic dynamics of the MYB superfamily. With the release of the plant genomes, a comprehensive phylogenomic analysis of the MYB superfamily across Viridiplantae is allowed. The present study performed phylogenetic, phylogenomic, syntenic, horizontal gene transfer, and neo/sub-functionalization analysis of the MYB superfamily to explore the evolutionary contributions of MYB members to species diversification, trait formation, and environmental adaptation in 437 different plant species. We identified major changes in copy number variation and genomic context within subclades across lineages. Multiple MYB subclades showed highly conserved copy number patterns and synteny across flowering plants, whereas others were more dynamic and showed lineage-specific patterns. As examples of lineage-specific morphological divergence, we hypothesize that the gain of a MYB orthogroup associated with flower development and environmental responses and an orthogroup associated with auxin and wax biosynthesis in angiosperms were correlated with the emergence of flowering plants, unbiased neo-/sub-functionalization of gene duplicates contributed to environmental adaptation, and species-specific neo-/sub-functionalization contributed to phenotype divergence between species. Transposable element insertion in promoter regions may have facilitated the sub-/neo-functionalization of MYB genes and likely played a tissue-specific role contributing to sub-/neo-functionalization in plant root tissues. This study provides new insights into the evolutionary divergence of the MYB superfamily across major flowering and non-flowering lineages and emphasizes the need for lineage-/tissue-specific characterization to further understand trait variability and environmental adaptation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available