4.7 Article

Huperzine-A Improved Animal Behavior in Cuprizone-Induced Mouse Model by Alleviating Demyelination and Neuroinflammation

Journal

Publisher

MDPI
DOI: 10.3390/ijms232416182

Keywords

multiple sclerosis; cuprizone model; huperzine A; microglia; oligodendrocyte precursor cell

Funding

  1. National Natural Science Funds of China [82074538, 81671597]
  2. Innovative Research Team of High-level Local Universities in Shanghai
  3. Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function [21DZ2271800]
  4. Clinical Research Plan of SHDC [SHDC2020CR2027B]
  5. Shanghai Municipal Science and Technology Major Project [2018SHZDZX01]
  6. ZJLab

Ask authors/readers for more resources

HupA primarily exerts its therapeutic effects on multiple sclerosis by alleviating demyelination and neuroinflammation.
Huperzine A (HupA) is a natural acetylcholinesterase inhibitor (AChEI) with the advantages of high efficiency, selectivity as well as reversibility and can exhibit significant therapeutic effects against certain neurodegenerative diseases. It is also beneficial in reducing the neurological impairment and neuroinflammation of experimental autoimmune encephalomyelitis (EAE), a classic model for multiple sclerosis (MS). However, whether HupA can directly regulate oligodendrocyte differentiation and maturation and promote remyelination has not been investigated previously. In this study, we have analyzed the potential protective effects of HupA on the demylination model of MS induced by cuprizone (CPZ). It was found that HupA significantly attenuated anxiety-like behavior, as well as augmented motor and cognitive functions in CPZ mice. It also decreased demyelination and axonal injury in CPZ mice. Moreover, in CPZ mice, HupA increased mRNA levels of the various anti-inflammatory cytokines (Arg1, CD206) while reducing the levels of different pro-inflammatory cytokines (iNOS, IL-1 beta, IL-18, CD16, and TNF-alpha). Mecamylamine, a nicotinic acetylcholinergic receptor antagonist, could effectively reverse the effects of HupA. Therefore, we concluded that HupA primarily exerts its therapeutic effects on multiple sclerosis through alleviating demyelination and neuroinflammation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available