4.7 Article

A streaming-potential-based microfluidic measurement of surface charge at immiscible liquid-liquid interface

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2023.108200

Keywords

Immiscible liquid-liquid interface; Surface charge; Streaming potential experiment; Electrical double layer

Ask authors/readers for more resources

Surface charging plays a crucial role in the stability of immiscible liquid-liquid interfaces, surfactant adsorption, drug delivery, and mineral flotation. This study presents an alternative experimental method using a streaming potential setup. A Y-Y shaped microchannel with a polymer-coated inner wall was employed to establish a flat and stable liquid-liquid interface. The method was successfully verified by investigating the charging of aqueous solution-silicon surface. The proposed method offers simplicity and flexibility for studying liquid-liquid interface charging mechanisms and inspiring quantitative macroscopic interfacial modeling.
Surface charging at immiscible liquid-liquid interface is essential to the emulsion stability, surfactant adsorption, and various engineering applications such as drug delivery and mineral flotation. However, droplet electro-phoresis, as a widely-used electrokinetic method to measure the surface charge density, has various limitations in physical modeling and sample preparation. In this work, an alternative experimental method based on streaming potential setup is proposed. A Y-Y shaped microchannel was used to make a flat and stable liquid-liquid interface. The inner wall was coated with polymer to suppress the interference of the solid-liquid interfacial electrokinetics in the liquid-liquid one. The experimental setup was first verified by revisiting the aqueous solution-silicon surface charging, after which the surfactant-free decane-KCl solution interface charging was investigated. The negative surface charge at the decane-KCl solution interface is confirmed and found to increase when increasing the pH. This result is compatible with the probable charging mechanism that the acquired negative surface charge results from hydroxyl ion adsorption onto the interface. The proposed method enables the simplicity and flexibility for further side-by-side studies on the liquid-liquid interface charging mechanism and will inspire the quantitative macroscopic interfacial modeling for numerous scenarios, such as the droplet electrophoresis and interfacial electro-hydrodynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available