4.7 Article

A systematic study on the influence of electrochemical charging conditions on the hydrogen embrittlement behaviour of a pipeline steel

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 48, Issue 43, Pages 16501-16516

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2023.01.149

Keywords

Hydrogen embrittlement; Pipeline steel; Electrochemical charging; Ductility; Mechanical strength; Blistering

Ask authors/readers for more resources

Although studies on hydrogen embrittlement have been conducted for a long time, there is a lack of systematic research on the susceptibility of steels to hydrogen embrittlement under different electrochemical charging conditions. This study focuses on this knowledge gap by evaluating the behavior of a typical pipeline steel (X65) after hydrogen-charging in different electrolytes that simulate industrial environments. The results show that the susceptibility to hydrogen embrittlement of X65 steel varies significantly with the hydrogen-charging electrolytes and, to a lesser extent, with the electrochemical charging variables.
Although hydrogen embrittlement (HE) has been the subject of extensive research over the past century, a systematic study on the HE susceptibility of steels under different electrochemical charging conditions has been lacking. This study specifically targets this knowledge gap by evaluating the HE behaviour of a typical pipeline steel X65 after hydrogen-charging in acidic, neutral, and alkaline electrolytes that simulate various industrial environments. Results from a series of experiments show that the HE susceptibility of X65 steel varied significantly with hydrogen-charging electrolytes and, to a smaller extent, with electrochemical charging variables. The highest and lowest HE susceptibilities were found from specimens charged in acidic and alkaline electrolytes, respectively. An increase in yield strength was observed for almost all hydrogen-charged specimens, regardless of the charging conditions. Under severe electrochemical charging conditions, blistering was detected and mechanical properties were substantially decreased. Discussion has been made in comprehending these relationships. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available