4.7 Article

Defect Engineering in CuSx/COF Hybridized Heterostructures: Synergistic Facilitation of the Charge Migration for an Efficacious Photocatalytic Conversion of CO2 into CO

Journal

INORGANIC CHEMISTRY
Volume 61, Issue 49, Pages 20064-20072

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.2c03481

Keywords

-

Funding

  1. National Natural Science Foundation of China [22162023]
  2. Industry Supporting Project for Gansu Institution of Higher Learning [2021CYZC-26]
  3. Key Science and Technology Foundation of Gansu Province [21YF5GA068]
  4. Innovative Research Team for Science and Technology of Shaanxi Province [2022TD-04]

Ask authors/readers for more resources

This study emphasizes the rational construction of heterogeneous structures between organic and inorganic photocatalysts, highlighting the possible synergistic effect of defect centers for enhancing photocatalytic performance.
The photocatalytic CO2 reduction reaction (CO2RR) provides an attractive approach to tackling environmental issues. To actualize the optimal catalytic efficiency, one efficacious strategy is to rationally modulate the charge migration for the adopted heterogeneous catalysts. Herein, by virtue of a onestep hydrothermal method, Cu2S nanospheres and defect-rich Cu2S (CuSx) nanosheets are wrapped by a triazine-containing covalent framework (TP-TA COF), resulting in CuSx/TP-TA and Cu2S/TP-TA. Owing to the heterojunction construction that suppresses the carrier recombination, both hybridized structures present enhanced charge migration in comparison to that of their corresponding sulfides and COF constituents. It is worth emphasizing that CuSx/TP-TA proffers a significantly greater photocurrent than Cu2S/TP-TA. The subsequent photocatalytic reduction of CO2 also exhibits an apparently higher CO evolution rate, about 2.8 times higher than the Cu2S/TP-TA photocatalyst. The above evident improvement owes much to the heterostructure establishment between CuSx and TP-TA COF, as well as the synergistic effect provided by the defect engineering for CuSx, both of which are able to enhance the separation efficiency of photoinduced carriers. Our work sheds light on the rational construction of heterogeneous structures between organic and inorganic photocatalysts, which emphasizes the possible synergistic effect of defect centers for enhancing photocatalytic performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available