4.7 Article

Surface Reconstruction of an FeNi Foam Substrate for Efficient Oxygen Evolution

Related references

Note: Only part of the references are listed.
Article Multidisciplinary Sciences

Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis

Zuyun He et al.

Summary: Researchers have synthesized Mo-doped NiFe (oxy)hydroxide to modulate oxygen activity, leading to enhanced electrocatalytic performance for oxygen evolution reaction (OER). The study provides critical insights into the role of lattice oxygen in determining the activity of (oxy)hydroxides and demonstrates tuning oxygen activity as a promising approach for constructing highly active electrocatalysts.

NATURE COMMUNICATIONS (2022)

Article Chemistry, Multidisciplinary

Engineering Ultrafine NiFe-LDH into Self-Supporting Nanosheets: Separation-and-Reunion Strategy to Expose Additional Edge Sites for Oxygen Evolution

Zhihao Zhang et al.

Summary: A strategy for preparing Ni-Fe layered double hydroxide (NiFe-LDH) with abundant exposed edge planes for enhanced oxygen evolution reaction (OER) is reported in this study. The NiFe-LDH/C material shows superior OER performance at a current density of 50 mA cm(-2) due to its unique structural engineering and exposed active edge sites.

SMALL (2021)

Article Engineering, Environmental

Activating nickel iron layer double hydroxide for alkaline hydrogen evolution reaction and overall water splitting by electrodepositing nickel hydroxide

Noto Susanto Gultom et al.

Summary: The study explores the activation of NiFe-LDH for hydrogen evolution reaction (HER) and overall water splitting by depositing Ni(OH)2 nanoparticles to form NiFe-LDH/Ni(OH)2 composite electrocatalyst. The composite catalyst shows significantly improved electrocatalytic performance in alkaline conditions, with a current density of 180 mA/cm2 achieved at a higher overpotential of -0.3 V. The synergistic effect between NiFe-LDH and Ni(OH)2 accelerates the water dissociation step and electron transfer, resulting in enhanced overall water splitting efficiency.

CHEMICAL ENGINEERING JOURNAL (2021)

Review Chemistry, Physical

Self-Supported Electrocatalysts for Practical Water Electrolysis

Hongyuan Yang et al.

Summary: Over the years, significant progress has been made in enhancing the efficiency of water splitting through the development of economic electrocatalysts with improved conductivity, active site accessibility, and intrinsic activity. However, the challenge remains to create earth-abundant catalysts that can meet the demands of practical water electrolysis. Self-supported electrocatalysts are considered the most suitable contenders for large-scale hydrogen generation due to their features like increased active species loading, rapid charge and mass transfer, strong affinity between catalytic components and substrates, easily controlled wettability, and enhanced bifunctional performance.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Interfacing or Doping? Role of Ce in Highly Promoted Water Oxidation of NiFe-Layered Double Hydroxide

Mengjie Liu et al.

Summary: Surface engineering of transition metal layered double hydroxides (LDHs) can enhance their catalytic activity for the oxygen evolution reaction (OER). The study on Ce-doped NiFe-LDHs and Ce(OH)(3) interfaced NiFe-LDHs reveals that Ce and Fe atoms facilitate the oxidation of Ni3+/4+ in NiFe-LDH, resulting in superior catalytic activity for water oxidation. The enhanced electron transfer between Ce(OH)(3) and the matrix in Ce@NiFe-LDH leads to better catalytic activity compared to CeNiFe-LDH, as demonstrated by first-principles density functional theory (DFT) calculations.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Acid-Corrosion-Induced Hollow-Structured NiFe-Layered Double Hydroxide Electrocatalysts for Efficient Water Oxidation

Peican Wang et al.

Summary: The study presents a highly active and stable NiFe LDH@NiFe electrocatalyst for oxygen evolution reaction, with optimized electrode/gas/electrolyte interface and electrocatalyst/substrate interface. The intimate connection between nanosheet arrays and substrate, along with excellent hydrophilicity and aerophobicity, enables significantly improved infiltration of electrolytes, quick release of oxygen bubbles, and remarkably enhanced charge transfer, showing great potential for electrocatalytic applications.

ACS APPLIED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution

Hongming Sun et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Organic Small Molecule Activates Transition Metal Foam for Efficient Oxygen Evolution Reaction

Jing Zhang et al.

ADVANCED MATERIALS (2020)

Article Multidisciplinary Sciences

Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution

Huan Yang et al.

NATURE COMMUNICATIONS (2020)

Article Materials Science, Multidisciplinary

Green synthesis of NiFe LDH/Ni foam at room temperature for highly efficient electrocatalytic oxygen evolution reaction

Hongchao Yang et al.

SCIENCE CHINA-MATERIALS (2019)

Article Chemistry, Physical

Sub-3 nm Ultrafine Monolayer Layered Double Hydroxide Nanosheets for Electrochemical Water Oxidation

Yufei Zhao et al.

ADVANCED ENERGY MATERIALS (2018)

Article Chemistry, Multidisciplinary

Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity

Michaela Burke Stevens et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2017)

Article Multidisciplinary Sciences

Homogeneously dispersed multimetal oxygen-evolving catalysts

Bo Zhang et al.

SCIENCE (2016)

Article Chemistry, Multidisciplinary

NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting

Chun Tang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2015)

Article Chemistry, Multidisciplinary

An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation

Ming Gong et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2013)