4.7 Article

Mu-Synthesis PID Control of Full-Car With Parallel Active Link Suspension Under Variable Payload

Journal

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
Volume 72, Issue 1, Pages 176-189

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2022.3203610

Keywords

Automobiles; payloads; roads; suspensions (mechanical systems); torque; uncertainty; vehicle dynamics

Ask authors/readers for more resources

This article presents a combined mu-synthesis PID control scheme, employing a frequency separation paradigm, for a recently proposed novel active suspension, the Parallel Active Link Suspension (PALS). The developed mu-synthesis control scheme is superior to the conventional H-infinity control, previously designed for the PALS, in terms of ride comfort and road holding (higher frequency dynamics), with important realistic uncertainties, such as in vehicle payload, taken into account. The developed PID control method is applied to guarantee good chassis attitude control capabilities and minimization of pitch and roll motions (low frequency dynamics).
This article presents a combined mu-synthesis PID control scheme, employing a frequency separation paradigm, for a recently proposed novel active suspension, the Parallel Active Link Suspension (PALS). The developed mu-synthesis control scheme is superior to the conventional H-infinity control, previously designed for the PALS, in terms of ride comfort and road holding (higher frequency dynamics), with important realistic uncertainties, such as in vehicle payload, taken into account. The developed PID control method is applied to guarantee good chassis attitude control capabilities and minimization of pitch and roll motions (low frequency dynamics). A multi-objective control method, which merges the aforementioned PID and mu-synthesis-based controls is further introduced to achieve simultaneously the low frequency mitigation of attitude motions and the high frequency vibration suppression of the vehicle. A seven-degree-of-freedom Sport Utility Vehicle (SUV) full car model with PALS, is employed in this work to test the synthesized controller by nonlinear simulations with different ISO-defined road events and variable vehicle payload. The results demonstrate the control scheme's significant robustness and performance, as compared to the conventional passive suspension as well as the actively controlled PALS by conventional H-infinity control, achieved for a wide range of vehicle payload considered in the investigation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available