4.7 Article

Spectroscopic and Computational Investigations of The Thermodynamics of Boronate Ester and Diazaborole Self-Assembly

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 81, Issue 3, Pages 969-980

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.joc.5b02548

Keywords

-

Funding

  1. Wesleyan University
  2. NSF [CNS-0619508]

Ask authors/readers for more resources

The solution phase self-assembly of boronate esters, diazaboroles, oxathiaboroles, and dithiaboroles from the condensation of arylboronic acids with aromatic diol, diamine, hydroxythiol, and dithiol compounds in chloroform has been investigated by H-1 NMR spectroscopy and computational methods. Six arylboronic acids were included in the investigations with each boronic acid varying in the substituent at its 4-position. Both computational and experimental results show that the para-substituent of the arylboronic acid does not significantly influence the favorability of forming a condensation product with a given organic donor. The type of donor, however, greatly influences the favorability of self-assembly. 1H NMR spectroscopy indicates that condensation reactions between arylboronic acids and catechol to give boronate esters are the most favored thermodynamically, followed by diazaborole formation. Computational investigations support this conclusion. Neither oxathiaboroles nor dithiaboroles form spontaneously at equilibrium in chloroform at room temperature. Computational results suggest that the effect of borylation on the frontier orbitals of each donor helps to explain differences in the favorability of their condensation reactions with arylboronic acids. The results can inform the use of boronic acids as they are increasingly utilized in the dynamic self-assembly of organic materials and as components in dynamic combinatorial libraries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available