4.6 Article

Bayesian regional moment tensor from ocean bottom seismograms recorded in the Lesser Antilles: implications for regional stress field

Journal

GEOPHYSICAL JOURNAL INTERNATIONAL
Volume 233, Issue 2, Pages 1036-1054

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/gji/ggac494

Keywords

Earthquake source observations; Seismicity and tectonics; Waveform inversion; Fractures; faults and high strain deformation zones; Subduction zone processes

Ask authors/readers for more resources

By deploying ocean bottom seismometers and using the Am Phi B-'Amphibious Bayesian' inversion method, the study reveals the influence of the quality of horizontal components on the research of earthquake source mechanism in the Lesser Antilles. The Bayesian formulation in Am Phi B significantly reduces the artificial compensated linear vector dipole (CLVD) contributions and improves the accuracy of the focal geometry compared to standard inversion methods. The study also analyzes the stress regimes along the subduction zone and discovers the variations in stress conditions along the arc.
Seismic activity in the Lesser Antilles (LA) is characterized by strong regional variability along the arc reflecting the complex subduction setting and history. Although routine seismicity monitoring can rely on an increasing number of island stations, the island-arc setting means that high-resolution monitoring and detailed studies of fault structures require a network of ocean bottom seismometers (OBS). As part of the 2016-2017 Volatile recycling at the Lesser Antilles arc (VoiLA) project, we deployed 34 OBS stations in the forearc and backarc. During the deployment time, 381 events were recorded within the subduction zone. In this paper, we perform full-waveform regional moment tensor (RMT) inversions, to gain insight into the stress distribution along the arc and at depth. We developed a novel inversion approach, Am Phi B-'Amphibious Bayesian', taking into account uncertainties associated with OBS deployments. Particularly, the orientation of horizontal components (alignment uncertainty) and the high noise level on them due to ocean microseisms are accounted for using Am Phi B. The inversion is conducted using a direct, uniform importance sampling of the fault parameters within a multidimensional tree structure: the uniXtree-sampling algorithm. We show that the alignment of the horizontal OBS components, particularly in high noise level marine environments, influences the obtained source mechanism when using standard least-squares (L2) RMT inversion schemes, resulting in systematic errors in the recovered focal mechanisms including high artificial compensated linear vector dipole (CLVD) contributions. Our Bayesian formulation in Am Phi B reduces these CLVD components by nearly 60 per cent and the aberration of the focal geometry as measured by the Kagan angle by around 40 per cent relative to a standard L2 inversion. Subsequently, we use Am Phi B-RMT to obtain 45 (M-w > 3.8) regional MT solutions, out of which 39 are new to any existing database. Combining our new results with existing solutions, we subsequently analyse a total of 151 solutions in a focal mechanism classification (FMC) diagram and map them to the regional tectonic setting. We also use our newly compiled RMT database to perform stress tensor inversions along the LA subduction zone. On the plate interface, we observe the typical compressional stress regime of a subduction zone and find evidence for upper-plate strike slip and normal fault behaviour in the north that becomes a near arc-perpendicular extensional stress regime towards the south. A dominant slab perpendicular extensional stress regime is found in the slab at 100-200 km beneath the central part of the arc. We interpret this stress condition to be a result of slab pull varying along the arc due to partial slab detachment along previously hypothesized lateral slab tear near Grenada, at the southern end of the LA arc, leading to reactivation of pre-existing structures around the subducted Proto-Caribbean ridge.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available