4.6 Article

The origin and loss of interferon regulatory factor 10 (IRF10) in different lineages of vertebrates

Journal

GENE
Volume 854, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.gene.2022.147083

Keywords

Interferon regulatory factor; IRF10; Origin; Gene loss; Evolution

Ask authors/readers for more resources

The vertebrate IFN regulatory factor (IRF) family consists of 11 members playing distinct roles in various biological processes. IRF10 is widely present in different vertebrate lineages but lost in primates and rodents. Evolutionary analysis shows that IRF10 originated after chondrichthyans diverged from gnathostomes. Phylogenetically, IRF10 is more closely related to IRF4, although they may share a common ancestor. The loss of IRF10 in Euarchontoglires might be due to mutation accumulation, with a higher mutation rate in rodents than primates.
The vertebrate IFN regulatory factor (IRF) family consists of 11 members that exert distinct roles in a variety of biological processes, including antiviral defense, regulation of cell proliferation, differentiation and apoptosis. Of these, IRF10 is widely present in different vertebrate lineages, but appears to have been lost in primates and rodents. To understand the evolutionary occurrence of IRF10, we performed comparative analyses of currently available genomic data in a taxonomically diverse set of vertebrates, and found that IRF10 originated after the divergence of chondrichthyans from gnathostomes. Phylogenetically, vertebrate IRF10 is much more closely related to IRF4 than to IRF8 or IRF9, although these four IRFs may have a common ancestor. In addition, the loss of IRF10 in Euarchontoglires might be resulted from mutation accumulation, and the rate of mutations in rodents appears to be higher than in the primate lineage. In primates, the gene-disruptive mutations may have occurred at least prior to the separation of new world monkey and old world primates, roughly 40 million years ago. Overall, we propose a detailed evolutionary scenario for IRF10, which may help us understand the evolutionary mechanisms in the expansion and contraction of the IRF family.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available