4.6 Article

Dietary sterol availability modulates heat tolerance of Daphnia

Journal

FRESHWATER BIOLOGY
Volume 68, Issue 3, Pages 452-461

Publisher

WILEY
DOI: 10.1111/fwb.14037

Keywords

cholesterol; climate change; cyanobacteria; lakes; nutritional ecology

Ask authors/readers for more resources

The increasing frequency and intensity of summer heatwaves are pushing freshwater zooplankton towards their upper thermal tolerance limits. The dominance of cyanobacteria in phytoplankton due to higher temperatures and prolonged water column stratification may intensify cholesterol limitation in zooplankton, compromising their resistance to future heatwaves. Increasing cholesterol limitation decreases the maximal temperature that Daphnia can withstand and could increase mortality by up to 45% and 72% under low and medium greenhouse gas emission scenarios, respectively.
The increasing frequency and intensity of summer heatwaves are pushing freshwater zooplankton towards their upper thermal tolerance limits. At the same time, higher temperatures and prolonged water column stratification can favour the dominance of cyanobacteria in phytoplankton. Even when not toxic or grazing resistant, these prokaryotes lack phytosterols as essential precursors for cholesterol, the main sterol in animal tissues. Cholesterol plays a crucial role in the physiological adaptation of ectotherms to high temperature. Therefore, the shift to cyanobacteria-dominated systems may increase the vulnerability of zooplankton to heatwaves by intensifying cholesterol limitation. Here, we used death time curves that take into consideration the intensity and duration of a thermal challenge and a dynamic model to study the effects of cholesterol limitation on the heat tolerance of the keystone species Daphnia magna and to simulate the cumulative mortality that could occur in a fluctuating environment over several days of heatwave. We show that increasing cholesterol limitation does not affect the slope between time-to-immobilisation and temperature, but does decrease the maximal temperature that Daphnia can withstand by up to 0.74 degrees C. This seemingly small difference is sufficient to halve the time individuals can survive heat stress. Our simulations predicted that, when facing heatwaves over several days, the differences in survival caused by cholesterol limitation build up rapidly. Considering the anticipated intensity and duration of future (2070-2099) heatwaves, cholesterol limitation could increase mortality by up to 45% and 72% under low and medium greenhouse gas emission scenarios, respectively. These results suggest that the increasing risk of cholesterol limitation due to more frequent cyanobacterial blooms could compromise the resistance of zooplankton populations to future heatwaves. More generally, this study shows the importance of considering the nutritional context in any attempt to predict ectotherm mortality with increasing temperatures in the field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available