4.7 Article

Fixing zein at the fibrillar carboxymethyl cellulose toward an amphiphilic nano-network

Journal

FOOD CHEMISTRY
Volume 398, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodchem.2022.133862

Keywords

Pickering emulsions; Zein; Carboxymethyl cellulose; Substitution degree; Electrostatic interactions

Ask authors/readers for more resources

In this study, co-assembled protein-polysaccharide complexes (ZCs) were prepared by fixing zein nanoparticles at the fibrillar carboxymethyl cellulose (CMC) by pH-driven anti-solvent precipitation. The complexation boosted the dispersity of zein from 17.3% to 88.6%. Scanning electron microscopy and atomic force microscopy confirmed the formation of network structures where the fibrous polysaccharides inserted into the interval of granular proteins. Circular dichroism spectrum, fluorescence spectrum, and X-ray diffraction verified the electrostatic interaction pattern between zein and CMC. Besides, the ZCs presented favorable amphiphilic properties, and the electrostatic interaction between zein and CMC can be fine-tuned by the substitution degree (DS) of carboxymethyl in CMC. Therefore, the Pickering emulsions stabilized by ZCs had controllable size and long-term stability using DS as a stimulus. Our study offers a novel strategy developing bio-based materials as novel stabilizers of Pickering emulsions.
In this study, co-assembled protein-polysaccharide complexes (ZCs) were prepared by fixing zein nanoparticles at the fibrillar carboxymethyl cellulose (CMC) by pH-driven anti-solvent precipitation. The complexation boosted the dispersity of zein from 17.3% to 88.6%. Scanning electron microscopy and atomic force microscopy confirmed the formation of network structures where the fibrous polysaccharides inserted into the interval of granular proteins. Circular dichroism spectrum, fluorescence spectrum, and X-ray diffraction verified the electrostatic interaction pattern between zein and CMC. Besides, the ZCs presented favorable amphiphilic properties, and the electrostatic interaction between zein and CMC can be fine-tuned by the substitution degree (DS) of carboxymethyl in CMC. Therefore, the Pickering emulsions stabilized by ZCs had controllable size and long-term stability using DS as a stimulus. Our study offers a novel strategy developing bio-based materials as novel stabilizers of Pickering emulsions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available