4.4 Article

Lower motor unit discharge rates in gastrocnemius lateralis, but not in gastrocnemius medialis or soleus, in runners with Achilles tendinopathy: a pilot study

Journal

EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
Volume 123, Issue 3, Pages 633-643

Publisher

SPRINGER
DOI: 10.1007/s00421-022-05089-w

Keywords

Achilles tendon; Running; Firing rate; Neural drive; Torque steadiness; Triceps surae; High-density electromyography

Ask authors/readers for more resources

This study investigated the motor unit discharge properties and torque steadiness of runners with Achilles tendinopathy (AT) at submaximal intensities. The results showed that runners with AT had a lower neural drive and failed to increase motor unit discharge rate to adjust for the increase in torque demand.
Objectives Deficits in muscle performance could be a consequence of a reduced ability of a motor neuron to increase the rate in which it discharges. This study aimed to investigate motor unit (MU) discharge properties of each triceps surae muscle (TS) and TS torque steadiness during submaximal intensities in runners with Achilles tendinopathy (AT). Methods We recruited runners with (n = 12) and without (n = 13) mid-portion AT. MU discharge rate was analysed for each of the TS muscles, using high-density surface electromyography during 10 and 20% isometric plantar flexor contractions. Results MU mean discharge rate was lower in the gastrocnemius lateralis (GL) in AT compared to controls. In AT, GL MU mean discharge rate did not increase as torque increased from 10% peak torque, 8.24 pps (95% CI 7.08 to 9.41) to 20%, 8.52 pps (7.41 to 9.63, p = 0.540); however, in controls, MU discharge rate increased as torque increased from 10%, 8.39 pps (7.25-9.53) to 20%, 10.07 pps (8.89-11.25, p < 0.001). There were no between-group difference in gastrocnemius medialis (GM) or soleus (SOL) MU discharge rates. We found no between-group differences in coefficient of variation of MU discharge rate in any of the TS muscles nor in TS torque steadiness. Conclusion Our data demonstrate that runners with AT may have a lower neural drive to GL, failing to increase MU discharge rate to adjust for the increase in torque demand. Further research is needed to understand how interventions focussing on increasing neural drive to GL would affect muscle function in runners with AT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available