4.8 Article

Improving the Performance of the Lamellar Reduced Graphene Oxide/Molybdenum Sulfide Nanofiltration Membrane through Accelerated Water-Transport Channels and Capacitively Enhanced Charge Density

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 57, Issue 1, Pages 615-625

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.2c06697

Keywords

membrane; permeability; electrical assistance; accelerated channel; surface charge density

Ask authors/readers for more resources

By incorporating molybdenum sulfide (MoS2) nanosheets and applying external electrical assistance, both the 2D channel and charge density of reduced graphene oxide (rGO) membranes were regulated to enhance water flux and salt rejection. The resulting rGO/MoS2 membranes exhibited expanded nanochannels, resulting in significantly increased water permeance. In addition, the high capacitance and negative potential of the membranes contributed to improved rejection rates for NaCl and Na2SO4 ions. This study provides new insights for the design of membranes with high water flux and salt rejection efficiency.
Graphene is promising in the construction of next-generation nanofiltration membranes for wastewater treatment and water purification. However, the application of graphene-based membranes has still been prohibited by their deficiencies in permeability and ion rejection. Herein, regulating the 2D channel and enhancing the charge density are co-adopted for simultaneous enhancement of the water flux and salt rejection of reduced graphene oxide (rGO) membranes through the intercalation of molybdenum sulfide (MoS2) nanosheets and external electrical assistance. The fabricated rGO/MoS2 membranes possess expanded nanochannels with less friction and a higher water molecule transport velocity gradient (from 8.57 to 14.07 s(-1)) than those of rGO membranes. Consequently, their water permeance increases from 0.92 to 34.9 L m(-2) h(-1) bar(-1). Meanwhile, benefiting from the high capacitance and negative potential of -1.1 V versus the saturated calomel electrode given to the membranes, their rejection rates toward NaCl reach 87.2% and those toward Na2SO4 reach 93.7%. The Dolman steric pore model analysis indicates that the capacitively and electrically increased surface charge density make great contributions to the higher ion rejection rate. This work gives new insights into membrane design for high water flux and salt rejection efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available