4.7 Article

Potential influence of fine aerosol chemistry on the optical properties in a semi-arid region

Journal

ENVIRONMENTAL RESEARCH
Volume 216, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2022.114678

Keywords

Optical properties; Aerosol chemistry; PM2; 5; Mineral dust; Organic matter

Ask authors/readers for more resources

Based on comprehensive observations, it was found that organic matter and mineral dust contribute significantly to aerosol absorption, especially in the ultraviolet wavelength. These findings reveal the complexity of the relationship between aerosol chemistry and optical properties, and have important implications for regional air pollution and climate change.
The current understanding regarding the potential influence of aerosol chemistry on the optical properties does not satisfy accurate evaluation of aerosol radiative effects and precise determination of aerosol sources. We conducted a comprehensive study of the potential influence of aerosol chemistry on the optical properties in a semi-arid region based on various observations. Organic matter was the main contributor to the scattering co-efficients followed by secondary inorganic aerosols in all seasons. We further related aerosol absorption to elemental carbon, organic matter, and mineral dust. Results showed that organic matter and mineral dust contributed to >40% of the aerosol absorption in the ultraviolet wavelengths. Therefore, it is necessary to consider the absorption of organic matter and mineral dust in addition to that of elemental carbon. We further investigated the potential influence of chemical composition, especially of organic matter and mineral dust on the optical parameters. Mineral dust contributed to higher absorption efficiency and lower scattering efficiency in winter. The absorption angstrom ngstro center dot m exponent (AAE) was mostly sensitive to organic matter and mineral dust in winter and spring, respectively; it was relatively high (i.e., 1.68) in winter and moderate (i.e., 1.42) in spring. Unlike in the other seasons, mineral dust contributed to higher mass absorption efficiency in winter. This work reveals the complexity of the relationship between aerosol chemistry and optical properties, and especially the influence of organic matter and mineral dust on aerosol absorption. The results are highly important regarding both regional air pollution and climate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available