4.7 Article

Environmental impacts of covid-19 pandemic: Release of microplastics, organic contaminants and trace metals from face masks under ambient environmental conditions

Journal

ENVIRONMENTAL RESEARCH
Volume 217, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2022.114956

Keywords

Covid-19 face masks; Natural degradation; Microplastics; Organic contaminants; Toxic trace metals; Soil environment

Ask authors/readers for more resources

The study monitored the decomposition of medical face masks in outdoor environmental conditions over a 60-week period. It found that the masks decomposed via sunlight-initiated oxidative degradation, releasing microplastics, organic contaminants, and toxic metals into the soil, causing moderate pollution.
The covid-19 pandemic era was characterized by heavy usage and disposal of medical face masks, now estimated at over 1.24 trillion. Few studies had attempted to demonstrate the release of microplastics from face masks using simulated conditions and application of mechanical forces, far different from the effects experienced by face masks dumped in the open environment, in landfills and dumpsites. In the current study, we monitored the release of microplastics, organic contaminants and toxic metals from medical face masks degraded under normal outdoor environmental conditions, over a period of 60 weeks. We showed that face mask's decomposition proceeded via sunlight (UV) - initiated oxidative degradation, leading to the replacement of methylene (CH2-) and alkyl (CH3-) groups in face mask's polypropylene backbone with hydroxyl and ketonic functional groups. Organic compounds released from decaying face masks into the surrounding soil included alkanes, alkenes, carboxylic acids/diesters and phthalate esters. Mean maximum concentration of phthalates in the soil ranged from 3.14 mg/kg (diethyl phthalate) to 11.68 mg/kg di(2-ethylhexyl) phthalate. Heavy metals, including Cu, Pb, Cd, As, Sn and Fe, were released into the soil, leading to contamination factors of 3.11, 2.84, 2.42, 2.26, 1.80 and 0.99, respectively. Together, the metals gave a pollution load index (PLI) of 2.102, indicating that they constitute moderate pollution of the soil surrounding the heap of face masks. This study provides a realistic insight into the fate and impacts of the enormous amounts of face masks, disposed or abandoned in soil environments during the covid-19 pandemic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available