4.7 Article

Mining the landfill soil metagenome for denitrifying methanotrophic taxa and validation of methane oxidation in microcosm

Journal

ENVIRONMENTAL RESEARCH
Volume 215, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2022.114199

Keywords

Municipal solid waste landfill; Metagenomics; Methanotrophs; Methanogens; Methane-monooxygenases

Funding

  1. Science and Engineering Research Board (SERB) , New Delhi, India [EMR/2016/006589]

Ask authors/readers for more resources

This study characterized the microbial community at different depths of a landfill to assess their roles as methane sinks. The results showed anaerobic degradation of organic matter in the bottom soil and active aerobic denitrification in the top soil. The top soil had a higher abundance of aerobic methanotrophs, while the bottom soil had a dominance of anaerobic methanogens. The findings provide a better understanding of the relationship between methanotrophs and their environment in landfills.
In the present study, the microbial community residing at different depths of the landfill was characterized to assess their roles in serving as a methane sink. Physico-chemical characterization revealed the characteristic signatures of anaerobic degradation of organic matter in the bottom soil (50-60 cm) and, active process of aerobic denitrification in the top soil (0-10 cm). This was also reflected from the higher abundance of bacterial domain in the top soil metagenome represented by dominant phyla Proteobacteria and Actinobacteria which are prime decomposers of organic matter in landfill soils. The multiple fold higher relative abundances of the two most abundant genera; Streptomyces and Intrasporangium in the top soil depicted greater denitrifying taxa in top soil than the bottom soil. Amongst the aerobic methanotrophs, the genera Methylomonas, Methylococcus, Meth-ylocella, and Methylacidiphilum were abundantly found in the top soil metagenome that were essential for oxidizing methane generated in the landfill. On the other hand, the dominance of archaeal domain represented by Methanosarcina and Methanoculleus in the bottom soil highlighted the complete anaerobic digestion of organic components via acetoclasty, carboxydotrophy, hydrogenotrophy, methylotrophy. Functional characterization revealed a higher abundance of methane monooxygenase gene in the top soil and methyl coenzyme M reductase gene in the bottom soil that correlated with the higher relative abundance of aerobic methanotrophs in the top soil while methane generation being the active process in the highly anaerobic bottom soil in the landfill. The activity dependent abundance of endogenous microbial communities in the different zones of the landfill was further validated by microcosm studies in serum bottles which established the ability of the methanotrophic community for methane metabolism in the top soil and their potential to serve as sink for methane. The study provides a better understanding about the methanotrophs in correlation with their endogenous environment, so that these bacteria can be used in resolving the environmental issues related to methane and nitrogen man-agement at landfill site.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available