4.7 Article

Heterotrophic denitrification: An overlooked factor that contributes to nitrogen removal in n-DAMO mixed culture

Journal

ENVIRONMENTAL RESEARCH
Volume 216, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2022.114802

Keywords

Methane; n-DAMO; Syntrophy; Heterotrophic denitrification; Metagenomics

Ask authors/readers for more resources

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) is a sustainable process for simultaneous removal of nitrogen and methane. This study found that heterotrophs co-existing with denitrifying anaerobic methanotrophs play an important role in the n-DAMO process. These heterotrophs utilize methane-derived intermediates produced by the methanotrophs for denitrification and biomass growth. The findings provide new insights for optimizing the n-DAMO process for nitrogen removal from wastewater.
Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) has been recognized as a sustainable process for simultaneous removal of nitrogen and methane. The metabolisms of denitrifying anaerobic methanotrophs, including Candidatus Methanoperedens and Candidatus Methylomirabilis, have been well studied. However, potential roles of heterotrophs co-existing with these anaerobic methanotrophs are generally overlooked. In this study, we pulse-fed methane and nitrate into an anaerobic laboratory sequencing batch bioreactor and enriched a mixed culture with stable nitrate removal rate (NRR) of -28 mg NO3- -N L-1 d-1. Microbial community analysis indicates abundant heterotrophs, e.g., Arenimonas (5.3%-18.9%) and Fimbriimonadales ATM1 (6.4%), were enriched together with denitrifying anaerobic methanotrophs Ca. Methanoperedens (10.8%-13.2%) and Ca. Methylomirabilis (27.4%-34.3%). The results of metagenomics and batch tests suggested that the denitrifying anaerobic methanotrophs were capable of generating methane-derived intermediates (i.e., formate and acetate), which were employed by non-methanotrophic heterotrophs for denitrification and biomass growth. These findings offer new insights into the roles of heterotrophs in n-DAMO mixed culture, which may help to optimize n-DAMO process for nitrogen removal from wastewater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available