4.7 Article

Effect of soil texture and zinc oxide nanoparticles on growth and accumulation of cadmium by wheat: a life cycle study

Journal

ENVIRONMENTAL RESEARCH
Volume 216, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2022.114397

Keywords

Zin oxide nano; Cadmium; Wheat growth; Soil texture; Metal bioavailability

Ask authors/readers for more resources

This study evaluated the efficiency of zinc oxide nanoparticles (ZnONPs) on the growth of wheat in contaminated soils. The results showed that the use of ZnONPs significantly decreased Cd concentrations while increased Zn concentrations in plants, with the effects depending on the doses of nanoparticles and soil textures.
Cadmium (Cd) is getting worldwide attention due to its continuous accumulation in agricultural soils which is due to anthropogenic activities and finally Cd enters in food chain mainly through edible plants. Cadmium free food production on contaminated soils is great challenge which requires some innovative measures for crop production on such soils. The current study evaluated the efficiency of zinc oxide nanoparticles (ZnONPs) (0, 150 and 300 mg/kg) on the growth of wheat in texturally different soils including clay loam (CL), sandy clay loam (SCL), and sandy loam (SL) which were contaminated with were contaminated with 25 mg/kg of Cd before crop growth. Results depicted that doses of ZnONPs and soil textures significantly affected the biological yields, Zn and Cd uptake in wheat plants. The application of 300 mg/kg ZnONPs caused maximum increase in dry weights of shoot (66.6%), roots (58.5%), husk (137.8%) and grains (137.8%) in CL soil. The AB-DTPA extractable Zn was increased while Cd was decreased with doses of NPs depending upon soil textures. The maximum decrease in AB-DTPA extractable Cd was recorded in 300 mg/kg of ZnONPs treatment which was 58.7% in CL, 33.2% in SCL and 12.1% in SL soil as compared to respective controls. Minimum Cd concentrations in roots, shoots, husk and grain were found in 300 mg/kg ZnONPs amended CL soil which was 58%, 76.7%, 58%, and 82.6%, respectively. The minimum bioaccumulation factor (0.14), translocation index (2.46) and health risk index (0.05) was found in CL soil with the highest dose of NPs. The results concluded that use of ZnONPs significantly decreased Cd con-centration while increased Zn concentrations in plants depending upon doses of NPs and soil textures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available