4.7 Article

Single and combined toxicity assessment of primary or UV-aged microplastics and adsorbed organic pollutants on microalga Chlorella pyrenoidosa

Journal

ENVIRONMENTAL POLLUTION
Volume 318, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2022.120925

Keywords

UV-aged microplastic; Chlorella pyrenoidosa; Organic pollutants; Combined toxicity

Ask authors/readers for more resources

In this study, the single and combined toxicity of microplastics (MPs) and organic pollutants on Chlorella pyrenoidosa were investigated. The results showed that the combined impact of UV-aged MPs and organic pollutants had a significant damaging effect on algae cells. This research verified the remarkable combined toxicity between UV-aged MPs and organic pollutants on microalgae.
Microplastics (MPs), an emerging pollutant, have been increasingly raising concern due to the potential impacts on aquatic organisms. Moreover, the environmental aged MPs always exhibit different environmental behavior and interaction effect with organic pollutants from virgin MPs. In this work, the single and combined toxicity impact on Chlorella pyrenoidosa, a symbiont representative, has been investigated between MPs (e.g., polyamide microplastic (PA6), 75 mu m) and organic pollutants (e.g., sulfamethoxazole (SMX) and dicamba (DCB)). Growth inhibition, chlorophyll accumulation, superoxide dismutase (SOD), malondialdehyde (MDA), and catalase (CAT) were investigated with the primary or UV-aged PA6. Above 0.5 g/L PA6 (primary or UV-aged) inhibited cell growth and chlorophyll accumulation after 96 h cultivation as compared with the control. Besides, the inhibition impacts have enhanced as the UV-aging time extending in the single PA6 systems. The algae growth inhibition rate after 96 h cultivation in both the system i.e., single (PA6: 6.9%) and combined (PA6-SMX: 14.2%, PA6-DCB: 14.9%) was slightly lower than that of exposing in organic pollutants alone (SMX: 23.9%, DCB: 25.0%), while the chl. b concentration in 60 days UV-aged PA6 combined with SMX (1.19 mg/L) or DCB (1.40 mg/L) systems were higher than in single SMX (1.04 mg/L) or DCB (1.33 mg/L) system. In addition, there were several differences of the cellular oxidative stress in the combined system of SMX and DCB. Specially, it was not noticeable of three enzymatic activities for SMX exposing in the presence of primary or UV-aged PA6. While SOD, CAT, and MDA activities was obviously increasing after exposing in PA6 and DCB combined system, indicating the significant synergistic effect on algae cells damage. This research verified the remarkable combined toxicity between UV -aged MPs and organic pollutants on microalgae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available