4.5 Article

Nitrogen and phosphorus budget in an intensive irrigation area and effects on littoral water and groundwater (Yaqui Valley, Northwestern Mexico)

Journal

ENVIRONMENTAL MONITORING AND ASSESSMENT
Volume 195, Issue 1, Pages -

Publisher

SPRINGER
DOI: 10.1007/s10661-022-10721-5

Keywords

Nitrogen; Phosphorus; Water budget; Mass budget

Ask authors/readers for more resources

This study assessed the water and nitrogen-phosphorus quality in the Yaqui River Irrigation District in Mexico. The results showed that the drainage system effectively prevented excessive nitrogen from entering the aquifer, while the bay area experienced high levels of phosphorus pollution. It is necessary for the district administrators to focus on phosphate fertilizer management and implement irrigation techniques to improve water use efficiency.
The Yaqui River Irrigation District is a region in Mexico with intensive agricultural production; thus, large quantities of fertilizers are used, and excess fertilizer can affect the quality of water bodies. The aim of this work was to estimate the water budget and nitrogen (N) and phosphorous (P) mass budgets to evaluate possible contamination of a littoral water body (Tobari Bay) and leachates into an aquifer (Yaqui Valley aquifer). Wheat and corn crops were studied, climate information was compiled, and soil and water samples were collected for analysis. The water budget showed excess irrigation occurred due to the need for soil washing to prevent salinization. A total of 24% of all irrigation water was used for crops, 60% was discharged into the bay through runoff of the drainage system, and 16% corresponded to effective infiltration (aquifer recharge). The N budget showed that of the 100% N input, the highest percentage was used by plants (63%), and only minimal loss occurred through runoff (11%) and leachate into the aquifer (7%). The remaining N stayed in the soil (18%) or was volatilized (1%). These results indicate that the drainage system prevented large amounts of N from entering the aquifer; thus, the N concentrations in the groundwater did not exceed the regulated maximum limit for drinking water (10 mg N-NO3/L). In terms of the water pollution level in the bay, the presence of NO3- was minimal (concentrations below the quasintifiable limit). Of the 100% of P that was applied, 55% was used by the plants, and 40% remained in the soil; therefore, the P that was transported by runoff or was leached was minimal (3 and 2%, respectively). However, this minimal amount of P ranged from 0.1 to 0.2 mg/L in the bay, and these values exceeded the suggested values for the protection of aquatic life (0.01 mg/L). The administrators of the irrigation district must pay special attention to phosphate fertilizer management and implement irrigation techniques that increase water use efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available